

سازمان زمین شناسی و اکتشافات معدنی کشور

طرح تلفیق لایه های اطلاعاتی پایه و معرفی مناطق امیدبخش معدنی کشور

گزارش اکتشافات ژئوفیزیک در محدوده گردنه رخ (لاتاریک)

مجرى طرح: مهندس ناصر عابديان

مجری فنی : مهندس ابراهیم شاهین

ناظر فنی : مهندس سید ابوالحسن رضوی

مشاور : زمین فیزیک

تهران 1387

فهرست مطالب

صفحه	عنوان
6	چکیدہ
7	پیش آغاز
: كليات	بخش اول
10	1 – هدف از اکتشافات ژئوفیزیک
و مشخصات دستگاه های ژئوفیزیک	2 – نحوه انجام عمليات صحرائي 11
و آرایش های الکترودهای استفاده شده	3 – خلاصه ای در مورد روش ها 14
رن القائیIP)induced Polarization(IP)	14 – 1 – روش پلاريزاسيو 14
- شرح پديده IP	1 - 1 - 3
– منشاء پدیده IP	2 - 1 - 3
پلاریزاسیون فلزی یا الکترونیکی	- 3 - 1 - 3
پلاریزاسیون غشائی یا الکترولیتی	- 4 - 1 - 3
اندازه گیری پلاریزاسیون القائی	- 5 - 1 - 3
حوزه ای (اندازه گیری با جریان پیوسته)	15 — — — 6 — 1 — 3 – روش زمان —
- حوزه ای (اندازه گیری با فرکانس متغیر)	15 3 – 1 – 7 – روش فرکانس –
	16 Resistivity روش مقاومت سنجی Resistivity
های الکترودی استفاده شده	17 – 3 – آرايش
عات کلی از زمین شناسی آنها 22	18 4 – موقعیت جغرافیائی مناطق مورد اکتشاف و اطلا:

عنوان

بخش دوم : بررسی نتایج مطالعات ژئوفیزیک در محدوده های گردنه رخ (لاتاریک)

7 - بررسي نتايج مطالعات در محدوده گردنه رخ(لاتاريک) 29 RS) الكتريكي (RS) الكتريكي (RS) الكتريكي (RS) 30 \mathbb{Z}_2 و \mathbb{Z}_2 و \mathbb{Z}_1 – 1-1-1 – بررسی محدوده آنومالی های مقاوم الکتریکی زون های \mathbb{Z}_1 و \mathbb{Z}_2 31 Z_3 و Z_2 Z_2 , Z_1 بررسی محدوده آنومالی های شارژاییلیته زون های Z_1 , Z_2 و Z_2 32 $Z_5 = Z_4 - 3 - 1 - 7 - 3 - 1 - 7$ 33 ${
m Z}_{5}$ و ${
m Z}_{4}$ – 4-1-7 – بررسی محدوده آنومالی های شارژابیلیته زون های ${
m Z}_{4}$ و 34 Z_{11} تا Z_6 – 5-1-5 – بررسی محدوده آنومالی های مقاوم الکتریکی زون های Z_6 تا 35 Z_{11} تا Z_6 – 1-7 – 6-1-7 – 7-6 – 1-736 7 – 1 – 7 – بررسی کلی نقشه تغییرات شارژابیلیته 37

39
$$-8$$
411542 $8 - 1 - y_{1}$ (m_{2} mus n a fada 100 mus n a

صفحه

46	8 – 6 – بررسی شبه مقطع 210
47	8 – 7 – بررسی شبه مقطع 235
48	8 – 8 – بررسی شبه مقطع 240
49	8 – 9 – بررسی شبه مقطع 245
50	8 – 10 – بررسی شبه مقطع 250
51	8 – 11 – بررسی شبه مقطع 255
52	8 – 12 – بررسی شبه مقطع 260
53	8 – 13 – بررسی شبه مقطع 265

صفحه	عنوان
54	9-نتیجه گیری کلی و پیشنهادها
57	9 – 1 – پیشنهاد مطالعات تکمیلی

فهرست نقشه ها و دیاگرام ها

محدوده گردنه رخ (لاتاریک) شکل شماره A1 نقشه راه های دسترسی منطقه

شکل شماره A2 و A3 نقشه های زمین شناسی منطقه با مقیاس های 1/100/000 و 1/25/000

شکل شماره A4 تصویر برخی از رگه های سیلیسی و دهانه تونل قدیمی معدن متروکه

Configuration Map

نقشه شماره I-K نقشه موقعیت

1/2000 نقشه های شمارهKA-2و KB-2نقشه های تغییرات مقاومت الکتریکی و شارژابیلیته با مقیاس Resistivity & Chargeability Maps (Scale 1/2000)

1/5000 نقشه های شماره K-E و K-E نقشه های تغییرات مقاومت الکتریکی و شارژابیلیته با مقیاس Resistivity & Chargeability Maps (Scale 1/5000)

نقشه های شمارهK-5، K1، 5-K2 و K2-5 تاK-K1، 17-K1 و 17-K2 نقشه های شبه مقاطع و مقاطع مدلسازی شده

Pseudo Section Map & Inverse Model Maps (Chargeability&Resistivity)

در محدوده گردنه رخ (لاتاریک) در سازند ژوراسیک، برای اکتشافات اکسید روی که با کمی سولفور سرب و کانی های دیگر در لایه های سیلیسی همراه است از روش ژئوالکتریک IP و RS استفاده گردید. ابتدا منطقه مورد مطالعه ، زیر پوشش برداشت های شارژابیلیته (IP) و مقاومت ظاهری (RS) با آرایه مستطیلی Rectangle قرار گرفت، این برداشت شامل 1536 اندازه گیری با آرایه رکتانگل و 1999 اندازه گیری با آرایه داپیل – داپیل می باشد که کلا" 1535 اندازه گیری در این منطقه انجام گرفته است . نقشه های تغییرات مقاومت الکتریکی لایه های سیلیسی را که دارای مقاومت الکتریکی نسبتا" زیادتری نسبت به شیل ها بود بصورت بارزی مشخص کرد، در مواقعی هم مقاومت الکتریکی نسبتا" زیادتری نسبت به شیل ها بود بصورت بارزی مشخص کرد، در مواقعی هم نسبت به زمینه آن زیادتر بوده که راهنمای خوبی در ردیابی رگه های سرب و دیگر سولفورهای هادی نسبت به زمینه آن زیادتر بوده که راهنمای خوبی در ردیابی رگه های مینرالیزه سیلیسی بوده است، پس شبه مقاطع خام با آرایه دوقطبی – دوقطبی IDpole-Dipole تها کتریده و سپس با استفاده از نرم افزار RES2DIN مدلسازی مقاطع IP و RS انجام گرفته و در مرکز آنومالی های هر نرم افزار تریادتر بوده که راهنمای خوبی و تارژابیلیته در 10مقطع و در مرکز آنومالی های RS ترم افزار VIII مقاومت الکتریکی و شارژابیلیته در 20 مقطع و در مرکز آنومالی های RS نرم افزار RES2DIN مدلسازی مقاطع IP و RS انجام گرفته و روند تغیرات و گسترش عمقی نظر با کارشناس زمین شناس منطقه، محل گمانه های اکتشافی با مشخصات آنها شـامل طـول حفـاری ، آزیموت و شیب حفاری ارائه گردید .

پیش آغاز

اطلاعات کلی از یک منطقه که در زمان های زیادی بدست آمده و جمع آوری آنها و زمین شناسی عمومی منطقه همراه با برداشت های ژئوفیزیک هوائی می تواند زون های جالب برای اکتشافات معدنی را مشخص نماید ، اکتشافات زمینی و بازدید از مناطق مشخص شده و تهیه نقشه های زمین شناسی عمومی و برداشت محدوده زون های مینرالیزه قبل از انجام مطالعات ژئوفیزیک زمینی انجام می گیرد.

بطورکلی میتوان گفت که مطالعات ژئوفیزیک همراه با مطالعات ژئوشیمی تفضیلی در فاز دوم اکتشافات معدنی قرار می گیرد ، نحوه انتخاب محدوده هائی که در این گزارش به نتایج مطالعات ژئوفیزیک آنها پرداخته میشود نیز بر این اساس بوده ضمن اینکه اکتشافات ژئوشیمی انجام شده با مقیاس 1/100/000 برای این محدوده نیز علاوه بر زمین شناسی منطقه مبنای انتخاب محدوده های مطالعات ژئوفیزیک بوده است، با توجه به مینرالیزاسیون موجود در منطقه استفاده از روش ژئوالکتریک ، مغناطیس سنجی و در مواقعی گرانی سنجی اساس این مطالعات می توانست باشد که با توجه به برنامه پیشنهادی برای مطالعات ژئوفیزیک، در فاز اول از روش ژئوالکتریک شامل روش قطبش القائی Induced Polarization و روش مقاومت سنجی Resistivity که بطور مخفف IP و RS اطلاق می شود استفاده شده است. مطالعات در این منطقه طی قرارداد شماره 2179 –300 مورخ 1386/4/13 به این مشاور واگذار گردیده است ، برای انجام این مطالعات دو اکیپ IP در نظر گرفته شده که شامل آقایان سدیفی و افخمی کارشناس و آقایان بهرام فتاح ، منصور ایرانشاهی ، شهریار کاظم زاده و یوسف کشیش یوسفیان تکنسین های این مشاور بوده است ، سرپرستی اکیپ ها و برنامه ریزی توسط آقای مهندس یوسفی و تهیه گزارش توسط آقای دکتر جعفر کیمیاقلم انجام گرفته است ، لازم به توضیح است که کارشناسان این مشاور طی بازدید منطقه در مورد نتایج بدست آمده با کارشناس زمین شناس منطقه آقای مهندس قلی پور بحث های لازم را انجام و تبادل اطلاعات نموده اند، در مواقعی که برنامه های تکمیلی از طرف مشاور ارائه شده پس از تائید کارشناسان زمین شناسی و نماینده کارفرما به مورد اجرا درآمده است.

گزارش تهیه شده شامل دو بخش می باشد ، در بخش اول کلیاتی راجع به مناطق مورد اکتشاف ، هدف از مطالعات ژئوفیزیک ،نحوه انجام عملیات صحرائی ،اطلاعات کلی از روش های ژئوفیزیکی استفاده شده ، نحوه پردازش داده ها و زمین شناسی محدوده های زیر پوشش عنوان شده و سپس در بخش دوم نتایج مطالعات محدوده های گردنه رخ (لاتاریک) و دره معدن مورد بحث و بررسی قرار گرفته است ، برای هر محدوده نتیجه گیری کلی پس از تلفیق کلیه اطلاعات انجام و نهایتا" پس از بحث و تبادل نظر با کارشناسان زمین شناسی منطقه محل حفاری های اکتشافی ارائه گردیده است.

بخش اول: کلیات

1 – هدف از مطالعات ژئوفیزیک

با توجه به مینرالیزاسیون منطقه، استفاده از روش ژئوالکتریک IP و RS مورد توجه کارشناسان قرار گرفته است، با کاربرد این روش کلیه سولفورها به جز سولفور روی که جلای صمغی دارد می تواند مورد اکتشاف قرار گیرد، همچنین موقعیت برخی کانه ها از جمله اکسید روی ، سولفور روی و ... با توجه به مقاومت الکتریکی آنها و سنگ در بر گیرنده می تواند مبنای اکتشافات نیز باشد ، در این منطقه که کانه های سرب و روی مورد توجه است محدوده های کانه دار بصورت مستقیم و غیر مستقیم مورد کاوش قرار می گیرند ،بطورکلی هدف از مطالعات ژئوفیزیک در این منقطه را میتوان بصورت زیر عنوان نمود. بورت زیر عنوان نمود. ب – تعیین گستره آنومالی های RS و RG ب – ردیابی گسل ها و همبری ها ج – ردیابی گسل ها و همبری ها کارشناسان زمین شناسی ه – تعیین محل حفاری های اکتشافی و تعیین اولویت آنها

يستهاد العشاقات فالميلي در طبورت لروم

2 - نحوه انجام عملیات صحرائی و مشخصات دستگاه های ژئوفیزیک

برای برداشت داده ها در هر محدوده با داشتن اطلاعات زمین شناسی و وسعت و گستره زون های مینرالیزه ابتدا خط مبنائی در امتداد زون های مینرالیزه درنظر گرفته شده و با G.P.S این خط در زمین با فواصل 50 متر از یکدیگر علامت گذاری و با رنگ مشخص گردیده است ، با توجه به شبکه اندازه گیری ، ایستگاه های اندازه گیری با فواصل 20 متر در روی مقاطعی که عمود بر خط مبناء می باشند با S.P.S در زمین پیاده شده اند ، در مناطق مورد مطالعه برای اندازه گیری فاکتورهای IP و S.P. او یک مشخص گردیده است ، با توجه به شبکه اندازه گیری ، ایستگاه های اندازه گیری با فواصل 20 متر در روی مقاطعی که عمود بر خط مبناء می باشند با S.P.S در زمین پیاده شده اند ، در مناطق مورد مطالعه برای اندازه گیری فاکتورهای IP و S.P. از دو سری دستگاه های IP استفاده گردیده که شامل یک دستگاه گیرنده رقومی (IPR-10A) و یک سری دستگاه های S.P.S در حوزه زمان اندازه می باشد ، اندازه گیری در حوزه زمان انجام می گیرد و مشخصات دستگاه های گیرنده و ترانسمیتر آنها بصورت زیر است :

:IPR-10A (Receiver) گيرنده

- طيف ولتاژ اوليه از 30 ميكرو ولت تا 30 ولت
- دقت اختلاف پتانسیل اندازه گیری شده 0.1mv/v
 - دقت پتانسیل خودزا 1٪
 - صفحه نمایشگر رقومی
 - ابعاد 310mm×150mm×170mm -
 - وزن 3 کیلو گرم

- این دستگاه مقدار شارژ ابیلیته را پس از خنثی کردن پتانسیل طبیعی زمین در 6 پنجره زمانی در منحنی دشارژ می تواند اندازه گیری کند.
 - ترانسميتر TSQ-3/3000W :
 - قدرت خروجی حداکثر 3000 وات
 ولتاژ خروجی از 300 تا 1500 ولت
 حداکثرجریان خروجی 10 آمپر
 حداکثرجریان خروجی 10 میلی آمپر
 دقت قرائت MA 10 میلی آمپر
 ابعاد 320mm×530mm×320mm
 درجه حرارت مجاز محیط اندازه گیری از ⁵⁰- تا ⁵⁰-
 - وزن 30 كيلو گرم

الکترودها – برای ارسال جریان الکترودهای آهنی و برای اندازه گیری از الکترودهای غیر قابل پلاریزه استفاده می شود.

شكل الف - دستگاه ژنراتور ، دستگاه ترانسيمتر و دستگاه گيرنده

شكل ب – دستگاه ترانسيمتر TSQ-3

شکل ج – گیرنده IPR-10A دستگاه های ژئوفیزیکی IP ساخت کمپانی Scintrex کانادا که مورد استفاده قرار گرفته است.

3 – خلاصه ای در مورد روش ها و آرایش های الکترودهای استفاده شده

(IP) Induced Polarization روش پلاريز اسيون القائى-1-3

IP شرح پدیده – 1 - 1 - 3

دوقطبی AMNB (شکل 3)را در نظر گرفته و با تزریق جریان مستقیمی توسط دو الکترود A و B با شدت جریان I مقدار پتانسیل حاصله ΔV بین دو الکترود M و N قابل اندازه گیری است . شکل های شماره 1 الف و 1 ب تغییرات شدت جریان I و ΔV را برای یک سیکل زمان θ +T نشان می دهد ، T زمان بخش جریان در زمین و θ زمان قطع می باشد، زمان های T و θ به اندازه های انتخاب می شوند تا مقدار آن کافی برای برقرارای یک سیستم پخش و قطع کامل جریان در زمین باشد.

با توجه به شکل 1 (الف) دیده می شود که افت پتانسیل ΔV در موقع قطع جریان بصورت منحنی تغییر کرده (منحنی دشارژ) و در نهایت مجانب با محور زمان می گردد. این پدیده که می تواند چند ثانیه تا چند دقیقه طول بکشد بسیار مشخص بوده و نتیجه یک عمل القائی است و بنام پدیده پلاریزاسیون القائی Induced Polarization (IP) نامیده می شود ، این پدیده را بصورت بهتری پس از قطع جریان می توان مورد تجزیه و تحلیل قرار داد ، اندازه گیری مقدار پتانسیل باقیمانده ΔVIPO بلافاصله بعد از قطع جریان بعلت گرادیان زیاد منحنی مشکل می باشد و لذا تغییرات آن پس از گذشت زمان کمی اندازه گیری می گردد (ΔVIPt).

IP منشاء پديده – 2 – 1 – 3

دامنه منحنی با در نظر گرفتن کلیه شرایط مساوی در زمین مربوط به دو قطبی شدن مواد متشکله لایه های زمین می باشد، می توان چنین تصور کرد که اگر زمینی متشکل از خازن های کوچکی باشد وقتی جریان به زمین تزریق می شود شارژ شده و در موقع قطع جریان تخلیه می شوند، منحنی VIP را منحنی دشارژ می نامند البته این مطلب یک تصویر کلی از پدیده IP را بیان می کند ولی برای منشاء آن عوامل مختلف ذکر می کنند که می توان دو مورد زیر را ذکر کرد.

3 – 1 – 3 – پلاريزاسيون فلزي يا الكترونيكي

وقتی یک الکترود فلزی در یک محلول یونیزه بدون اعمال ولتاژی قرار داده شود بارهای الکتریکی مثبت و منفی از هم جدا شده و پتانسیلی بین الکترود و محلول ایجاد می کنند، زمانیکه به این مجموعه ولتاژی اعمال گردد تعادل یونی بهم می خورد و پتانسیلی بین الکترود و محلول وجود خواهد داشت و هنگامیکه ولتاژ اعمال شده حذف شود تعادل یونی به واسطه پخش یون ها دوباره بر گردانده می شود ، در زمین انتشار یون ها بوسیله آبهای زیر زمینی موجود در درزه ها و شکستگی و خلل و فرج می شود ، در زمین انتشار یون ها بوسیله آبهای زیر زمینی موجود در درزه ها و شکستگی و خلل و فرج می شود ، در زمین انتشار یون ها بوسیله آبهای زیر زمینی موجود در درزه ها و شکستگی و خلل و فرج قرار می گیرد پلاریزه می شود و بدین ترتیب اختلاف پتانسیلی در دو طرف دانه کانی فلزی بوجود می آید ، با قطع جریان از زمین ، یون ها از طریق محیط الکترولیتی پخش شده و اختلاف پتانسیل ایجاد شده در دانه کانی فلزی در زمان کوتاهی به سمت صفر میل می کنند این فرایند مبنای اندازه گیری شار ژابیلیته در روش اندازه گیری زمان حوزه ای است، از آنجائیکه این پدیده سطحی است لذا هر قدر کانی سازی بصورت دانه ای (Dessiminated) باشد پدیده IP قوی تر خواهد بود و این مزیتی بر سایر روش های ژئوفیزیکی است.

3 – 1 – 4 – پلاريزاسيون غشائي يا الكتروليتي

این نوع پلاریزاسیون در یک محدوده اکتشافی در سنگ ها وجود داشته و زمینه (Background) شارژابیلیته تشکیلات زمین شناسی را تشکیل می دهد ، پلاریزاسیون غشائی عمدتا" بعلت حضور کانی های رسی است ، سطح کانی های رسی دارای بار منفی است و در نتیجه بارهای مثبت را جذب می کنند ، بعد از گسترش جریان در زمین بارهای مثبت جابجا شده و پس از قطع جریان به وضع اولیه برمی گردند این عمل ایجاد پدیده IP می کند.

- 3 1 5 اندازه گیری پلاریزاسیون القائی روش های معمول اندازه گیری IP شامل دو روش زمان حوزه ای و روش فرکانس حوزه ای است که نوع مختصری از آنها ارائه می گردد.
 - 5 1 6 روش زمان حوزه اي (اندازه گيري با جريان پيوسته)

همانگونه که در پدیده IP شرح داده شد زمانیکه جریان پیوسته ای در طی مدت کوتاهی به زمین تزریق می شود پس از قطع جریان مقدار ولتاژ ایجاد شده طی یک منحنی دشارژ به صفر می رسد ، مقدار شارژابیلیته را در لحظه قطع جریان نمی توان اندازه گیری نمود زیرا گرادیان منحنی بسیار زیاد است، در عمل محدوده زیر منحنی دشارژ را در زمان t1 و t2 پس از قطع جریان اندازه گیری کرده و مقادیر آن به ΔVS (ولتاژ اولیه) تقسیم می گردد تا تاثیر تغییرات ولتاژ اولیه از بین برود در این صورت مقدار شارژابیلیته اندازه گیری شده برابر:

5 – 1 – 7 – روش فرکانس – حوزه ای (اندازه گیری با فرکانس متغیر) در این روش مقاومت ویژه ظاهری در دو فرکانس مختلف کمتر از 10 هرتز (بطور معمول 1/0 و 5 هرتز یا 0/3 و 2/5 هرتز) اندازه گیری می شود . مقاومت ویژه ظاهری سنگ در فرکانس پائین تر (paf) بیشتر از این مقدار در فرکانس بالاتر (paF) می باشد.بدین ترتیب در روش فرکانس – حوزه ای پارامتر اثر فرکانس (FE) بصورت زیر تعریف می شود :

PFE = 100 FE

$$MF = A(\rho_{af} - \rho_{aF}) / \rho_{aF}$$
. ρ_{af}

 $MF = A.FE.\sigma_{af}$

ایم 1/AM-1/AN-1/BM+1/BN بوده و بر حسب موقعیت الکترودها متفاوت است ، این ضریب برای آرایه های مختلف قبلا" محاسبه می گردد. یادآوری می گردد که مقاومت ویژه سنگها تابعی از عوامل زیر است:

وجود کانی های هادی از جمله سولفورها

از بحث پیرامون مسائل دیگر در مورد این روش خودداری کرده و متذکر می شود که اندازه گیری مقاومت ویژه هم زمان با اندازه گیری شارژ ابیلیته انجام می گیرد، بدین ترتیب که جریان تزریق شده به زمین مشخص بوده و پتانسیل توزیع شده در زمین توسط دستگاه گیرنده اندازه گیری می شود، بدینوسیله با در دست داشتن مقادیر Ι و ΔV مقدار م برای هر ایستگاه از رابطه Av/I هم محاسبه می گردد. با تهیه نقشه های تغییرات مقاومت ویژه ، کنتاکت ها ، گسل های احتمالی ، محل تجمع مواد هادی و غیره مشخص می گردد. لازم به یادآوری است چون در موقع اندازه گیری مقدار گر برای محاسبه مقاومت ظاهری باید مقدار پتانسیل خودزای زمین خنثی گردد لذا مقدار آن قابل اندازه گیری است ولی از آنجائیکه نقشه های پتانسیل خودزای زمین خنثی گردد لذا مقدار آن قابل اندازه گیری مشخص نماید (مگر در حالتهای خاص) لذا فقط نقشه های تغییرات شارژ ابیلیته و مقاومت ظاهری تهیه و مورد تفسیر قرار می گیرند.

3 – 3 – آر ایش های الکترودی استفاده شده:

تقریبا" همیشه اندازه گیری های مقاومت ویژه همراه با برداشت های IP صورت می پذیرد. برداشت ها بطور معمول در دو مرحله و با استفاده از دو آرایش انجام می گیرد . درمرحله اول بمنظور شناخت گسترش جانبی بی هنجاری ها از آرایش مستطیل (Rectangle) استفاده می شود و سپس جهت بررسی عمقی بی هنجاری ها آرایش دو قطبی – دوقطبی (Dipole-Dipole) بکار گرفته می شود . در اینجا به چگونگی برداشت های IP و مقاومت ویژه با آرایشهای یاد شده که بیشترین کاربرد را در این مطالعات بخود اختصاص می دهد پرداخته میشود.

- آرایش الکترودی مستطیلی یا Rectangle :

در این نوع آرایش الکترودی یک خط ثابت جریان (AB=L) را در نظر گرفته و جریان توسط دو الکترود A و B به زمین فرستاده می شود ،اندازه گیری شارژابیلیته و مقاومت الکتریکی توسط دو MN و N و در روی پروفیل هائی موازی AB انجام می گیرد. مقدار تغییر محل یا جهش MN روی پروفیل ها برابر فاصله MN=A می باشد انتخاب L و A بستگی به عمق و ابعاد توده معدنی دارد، اندازه گیری شارژ ابیلیته و مقاومت ظاهری به نقطه وسط MN نسبت داده می شود. عمق نفوذ با از دیاد L اضافه می شود و می توان عملیات را با مقادیر مختلف L انجام داد. نقاط اندازه گیری معمولا" در داخل مستطیلی به ابعاد AB/3 و AB/2 قرار دارد که مرکز آن O منطبق با وسط AB می باشد. شکل شماره 2 شمائی از این آرایه الکترودی را نشان می دهد. وقتی اندازه گیری در مستطیلی تمام شد محدوده مستطیل دیگر را مجاور آن می توان شروع کرد و بدین ترتیب تمام منطقه زیرپوشش قرار می گیرد. بزرگترین امتیاز این آرایه در این است که الکترودهای A و B ثابت نگه داشته شده و فقط الکترودهای M و N متحرک می باشند همچنین در زمان اندازه گیری شدت جریان ثابت می باشد.

- آرایش داپیل - داپیل BIPOLE - DIPOLE : (دوقطبی - دوقطبی) در این آرایش ،الکترودهای N,M,B,A در روی یک پروفیل قرار دارند. این آرایه با AB=A و OIO2=L1 و OIO2 و OL=M مشخص می شود. OI و O2 بترتیب مراکز AB و MN می باشند، در عمل معمولا" L=nL و L = L انتخاب می شود. شکل شماره 3 وضعیت الکترودها را نسبت بهم برای AB, 2= 1 نشان می دهد.در این آرایه در هر اندازه گیری چهارقطبی ABMN را با یک جهش معین تغییر می دهند، برای تهیه شبه مقطع از زمین می توان چنین عمل نمود که برای یک ثابت L یعنی موقعیت AB ، با تغییر دادن متعدد محل الکترودهای M و N روی یک پروفیل به اندازه گیری ها نقاط شارژ ایبلیته نقاط مختلفی در عمق اندازه گیری میشود، با تغییر محل AB و تکرار اندازه گیری ها نقاط دیگری مورد اندازه گیری قرار میگیرد، اندازه گیری ها معمولا" به نقطه برخورد خطوطی که با زاویه 45 درجه از نقاط O2 و O

بدین ترتیب با رسم خطوط هم شارژ ابیلیته شبه مقطعی از زمین تهیه می شود مسلما" این نوع شبه مقطع یک حالت کلی از تغییرات شارژ ابیلیته زمین را نشان می دهد زیرا عمق نفوذ فقط به فاصل الکترودها مربوط نبوده و به مقاومت ظاهری و تغییرات آن نیز بستگی دارد

(الف) نمودار تغییرات شدت جریان

(ب) نمودار تغییرات پتانسیل (ب)

شکل شماره 1– تغییرات جریان و پتانسیل در زمین در یک سیکل قطع و وصل جریان

Fig. No.: 3 Dipole - Dipole Array

4 – موقعیت جغرافیائی مناطق مورد اکتشاف و اطلاعات کلی از زمین شناسی آنها (زمین شناسی کوه لاتاریک – مهندس قلی پور)

منطقه کوه رخ (لاتاریک) در انتهائی ترین نقطه استان اصفهان و در مرز استان چهارمحال و بختیاری واقع گردیده است. روند کوه تقریبا شمال تا شمال خاوری می باشد.

محدوده مورد مطالعه در فاصله 25 كيلومترى شمال خاورى شهركرد و 20 كيلومترى شهرستان سامان در استان چهارمحال و بختيارى و در فاصله 70 كيلومترى جنوب باختر شهر اصفهان ، 32 كيلومترى جنوب باختر زرين شهر(لنجان) 3/5 كيلومترى باختر روستاى كليشا درخ و 500 مترى شمال باختر مزرعه لاتاريك واقع شده است . راه دسترسى به اين منطقه از اصفهان ، اتوبان فولادشهر ، زرين شهر ، چرمهين ، باغ بهادران ، روستاى كليشا درخ ، جاده سامان به سمت جعفرآباد يا از مسير شهركرد ، زرين شهر (25 كيلومترى) مى باشد.نقشه شماره A1 راههاى دسترسى به محدوده مورد مطالعه را نشان مى دهد.

از نقطه نظرزمین شناسی برمبنای نقشه زمین شناسی 1/100/000 منتشره توسط سازمان زمین شناسی و اکتشافات معدنی کشور محدوده مورد مطالعه کلا" در سازندهای ژوراسیک قرار گرفته که در داخل آنها توده های ولکانیکی به سن ژوراسیک بالائی مشاهده می گردد ، سازندهای ژوراسیک شامل شیل و ماسه سنگ میانی تا بالائی بوده و در قسمت دیگر یعنی روی ژوراسیک ها آهک های کرتاسه زیرین – میانی دارای رخنمون می باشند، نقشه های شماره A2 و A3 نقشه های زمین شناسی با مقیاس 1/100/000 و 1/25000 این منطقه را نشان می دهد.

با توجه به نمونه گیری های ژئوشیمیائی در ورقه لنجان یک محدوده امید بخش جهت اکتشافات روی و سرب پیشنهاد گردید که در ادامه با اکتشافات چکشی که در یک منطقه بسیار وسیع انجام گرفت سه محدوده 40 کیلومتر مربعی جهت اکتشافات تفضیلی تر پیشنهاد گردید، در این محدوده تعداد 6 رگه سیلیسی مینرالیزه بشرح زیر مشخص گردیده است.

رگه شماره یک :

رگه سیلیسی بطول حدودا" 50 متر و پهنای تقریبی 4 متر حاوی کانه زائی سرب بصورت گالن و روی بصورت اسفالریت و همی مورفیت و مس بصورت مالاکیت می باشد.

رگه شماره دو :

رگه سیلیسی بطول حدودا" 20 متر و پهنای تقریبی 4 متر حاوی کانه زائی سرب بصورت گالن و روی بصورت اسفالریت و همی مورفیت و مس بصورت مالاکیت می باشد.

رگه شماره سه :

رگه سیلیسی بطول حدودا" 5 متر و پهنای تقریبی 1 متر حاوی کانه زائی روی بصورت اسفالریت و همی مورفیت می باشد.

رگه شماره چهار :

رگه سیلیسی بطول حدودا" 5 متر و پهنای تقریبی 2 متر حاوی کانه زائی روی بصورت اسفالریت و همی مورفیت و سرب بصورت گالن می باشد.

رگه شماره ینج :

رگه سیلیسی بطول حدودا" 13 متر و پهنای تقریبی 2 متر حاوی کانه زائی روی بصورت اسفالریت و همی مورفیت و سرب بصورت گالن می باشد.

رگه شماره شش :

رگه سیلیسی بطول حدودا" 50 متر و پهنای تقریبی 12 متر حاوی کانه زائی روی بصورت اسفالریت و همی مورفیت و کربنات روی و سرب بصورت گالن می باشد.

IP یادآور می گردد که اکتشافات سولفور روی بعلت جلای صمغی آن با روش قطبش القائی IP امکان پذیر نیست و لذا در مورد کانه روی چون اغلب همراه با سولفور سرب است از روش قطبش القائی استفاده می شود و در مواردی که این کانه بصورت ماسیو یا توده ای باشد می توان از روش گرانی سنجی نیز استفاده نمود. در محدوده مورد مطالعه کانی های روی همراه با کمی سولفور سرب می باشد و لذا روش قطبش القائی می تواند زون های مینرالیزه را مشخص نماید از طرف دیگر چون کانه روی عمدتا" در یک رگه سیلیسی واقع شده و این رگه از نقطه نظر مقاومت الکتریکی می تواند در داخل شیل های ژوراسیک بصورت آنومالی مقاوم الکتریکی ظاهر شود لذا روش قطبش القائی که هم شارژ اییلیته و هم مقاومت الکتریکی را اندازه گیری می کند در اکتشافات این محدوده می تواند. محدوده های آنومالی IP و RS را مشخص نماید.

در شکل شماره A4 تصویر برخی از رگه های سیلیسی و دهانه تونل قدیمی نشان داده شده است.

5 – مطالعات قبلی انجام شدہ

مطالعاتي كه قبلا" در اين منطقه انجام شده بصورت زير بوده است.

- گزارش طرح پی جوئی منطقه ای سال 1377 (چهار گوش شهر کرد ، چرمهین ،
 جوشقان ، فرادنبه ، حوض ماهی) توسط شرکت مشاور اپال
- اکتشافات روی در سنگ های کربناته در محور ملایر اصفهان (سازمان زمین شناسی و اکتشافات معدنی کشور)(سال 1375)
- نقشه های زمین شناسی با مقیاس های 1/250/000 و 1/100/000 توسط سازمان زمین شناسی و اکتشافات معدنی کشور
 - نقشه زمین شناسی با مقیاس 25/000 / 1 (محدوده مورد مطالعه) در دست تهیه
- معدن متروکه سرب (لاتاریک) ،این معدن قدیمی سرب (لاتاریک) با مختصات جغرافیائی 250°01 و ۸ 2222°32 و ارتفاع 2323 متر از سطح دریا واقع شده است ، یک تونل با شاخه اصلی در حدود 50 متر و با دو شاخه فرعی و عمود بر امتداد تونل اصلی در آن مشاهده می شود، ماده معدنی بصورت یک افق یا عدسی با مینرالیزاسیون گالن و اسفالرب و کربنات های روی در یک گانگ سیلیسی می باشد که در واحدهای سمگی ژوراسیک قرار گرفته است.

6 – نحوه پردازش – تفسیر و نرم افزارهای مورد استفاده

پس از برداشت داده ها *و محاسبه* مقاومت الکتریکی ، نقشه های تغییرات شارژابیلیته IP ، تغییرات مقاومت الکتریکی RS و شبه مقاطع IP و RS تهیه گردیده است ، نحوه تهیه این نقشه ها و پردازش نتایج آنها بصورت زیر می باشد.

Chargeability Map IP نقشه تغییرات شارژ ابیلیته -1-6

برای تهیه این نقشه تغییرات شارژ ابیلیته ابتدا به طیف تغییرات مقادیر شارژابیلیته توجه کرده و فاصله پربندی ها طوری انتخاب شده که محدوده هائی که دارای شارژابیلیته نسبتا" زیاد است بخوبی درنقشه ظاهر گردیده اند می توان فاصله پربندی را 0.5mv/v تا 5mv/v و یا بیشتر انتخاب نمود این نقشه ها با مقیاس خطوط رنگی و یا با طیف رنگ نشان داده می شوند می توان این نقشه هارا بصورت 3 بعدی نیز ارائه نمود.

برای تعبیر و تفسیر نقشه تغییرات شارژابیلیته با توجه به مقدار زمینه Back Ground در یک سازند ، آنومالی ها مشخص می شود معمولا" محدوده ایکه مقادیر شارژابیلیته آنها بیشتر از 2 تا 2/5 برابر زمینه می باشند آنومالی تلقی می گردد، محدوده آنومالی بصورت محورهای آنومالی مشخص شده و زون بندی شده و شماره گذاری می شوند ، تفسیر آنومالی ها عبارتست از ارائه گستره آن ، مطابقت آنها با سازندی که آنومالی در آن واقع شده و بررسی آنومالی ها در سر زمین و انطباق آنها با کانی سازی های موجود و مطابقت نقشه های تغییرات IP و RS ، مشخص کردن هم بری ها و گسل ها و غیره – شبه مقاطع Pseudo Section IP

شبه مقاطع ابتدا با تصحیحات توپو گرافی تهیه می گردد ، ارتفاع ایستگاه های مقاطعی که در امتداد آن شبه مقطع تهیه شده در موقع پیاده کردن ایستگاه های پروفیل با G.P.S برداشت می شود همچنین می توان ارتفاع آنها را با تقریب از نقشه های توپو گرافی محاسبه نمود تصحیحات توپو گرافی با استفاده از نرم افزار انجام گرفته است.

بدین ترتیب با توجه به مواردی که برای پربندی خطوط هم شارژابیلیته ذکر شد نقشه شبه مقطع IP تهیه می گردد. (Resistivity Map) RS نقشه تغییرات مقاومت الکتریکی-2-6

پس از محاسبه مقاومت الکتریکی برای هر ایستگاه با آرایه مستطیلی نقشه تغییرات مقاومت الکتریکی تهیه می گردد ، این نقشه ها باید پربندی مناسب داشته باشند ، ابتدا طیف تغییرات آن مشخص می گردد ، در مواقعی که طیف تغییرات کم می باشد می توان از پربندی معمولی با خطوط هم مقاومت الکتریکی با فواصل 10 ، 20 و ... اهم متر استفاده نمود ، با توجه به اینکه در اغلب موارد محدوده هائی که دارای افت مقاومت الکتریکی می باشد و احتمال داده می شود که این افت مقاومت الکتریکی در رابطه با وجود زون های مینرالیزه خصوصا" سولفیدها باشد باید پربندی را طوری انتخاب که زون های هادی الکتریکی گویاتر درنقشه ظاهر شوند ، استفاده از مقیاس خطوط رنگی و یا طیف رنگی این زون را بارزتر مشخص می کند.

در مواقعی که طیف مقاومت الکتریکی وسیع است از ضریب استفاده شده است بطوریکه مقدار خطوط میزان مقاومت الکتریکی برابر خط میزان جانبی آن است،در این نوع پربندی زون های هادی الکتریکی بهتر نمایان می شوند در نقشه هائی از این نوع پربندی استفاده شده خطوط هم تراز با هموار کردن مقادیر عددی بصورت زیر انتخاب شده اند.

...., 140. 100. 70. 50. 35. 28. 20. 14. 10

همانگونه که دیده می شود با استفاده از این نوع پربندی زون های هادی الکتریکی بهتر مشخص می شوند.با استفاده از خطوط رنگی و یا طیف رنگی هم بری ها و گسل های اضافی در این نقشه مشخص می گردد .

و مقاطع مدلسازی شده Pseudo- Section RS و مقاطع مدلسازی شده IP بهیه شبه مقاطع مدلسازی شده

شبه مقاطع با برداشت فاکتورهای IP و RS با آرایه دوقطبی – دوقطبی به نحوی که در بند 3-3 ذکر گردید تهیه می شود برای این شبه مقاطع تصحیحات توپو گرافی با استفاده از نرم افزارهای موجود انجام و شبه مقطع خام با توجه به مواردی که برای پربندی نقشه های تغییرات IP و RS ذکر گردید تهیه میگردد ، ارتفاع ایستگاه های مقاطعی که در امتداد آن شبه مقطع تهیه شده در موقع پیاده کردن ایستگاه های پروفیل با G.P.S برداشت می شود همچنین می توان ارتفاع آنها را با تقریب از نقشه های توپو گرافی محاسبه نمود، سپس مقاطع IP و RS برای تعبیر و تفسیر به روش معکوس Inverse (Inverse با استفاده از نرم افزار مدلسازی می شوند، در این مقاطع بررسی آنومالی و محدوده ها آنها انجام شده و با یکدیگر مقایسه می شوند، با تلفیق نتایج بدست آمده با اطلاعات زمین شناسی و ژنوشیمیائی در اغلب موارد محدوده هائی با شارژابیلیته زیاد و مترادف آن با مقاومت الکتریکی کم بعنوان آنومالی های جالب در نظر گرفته شده و محل گمانه های حفاری ، شیب و عمق آنها مشخص می شوند. .6 – 4 – نرم افزارهای مورد استفاده در تهیه این گزارش و آماده سازی نقشه ها از نرم افزراهای زیر استفاده شده است.

- ترسیم نقشه های سه بعدی ، دو بعدی Surfer 8
 - مدلسازی معکوس Version 3.5 - RES2DINV
 - مقشه موقعیت و مختصات نقاط Map Source

در محدودہ گردنہ رخ(لاتاریک)

۷ – بررسی نتایج مطالعات در محدوده گردنه رخ(لاتاریک)

برای برداشت داده ها در این منطقه ابتدا خط مبنائی در امتداد رگه های مینرالیزه سیلیسی در زمین با G.P.S پیاده گردیده و مقاطع عمود بر خط مبنا از شماره 00 تا 310 شماره گذاری و ایستگاه ها با فاصله 20 متر از یکدیگر در امتداد پروفیل علامت گذاری شده اند ، خط مبناء تا مقطع 130 دارای امتداد N10°E بوده و سپس در امتداد شمال – جنوب تا مقطع 310 ادامه پیدا می کند، مختصات نقطه 00 خط مینا عبار تست از :

محدوده مورد اکتشاف با آرایه مستطیلی Rectangle و با طول خط جریان AB=800 متر و MN=20 متر تا مقطع 220 با 5 مستطیل به دنبال یکدیگر زیر پوشش قرار گرفته و سپس مقاطع در جهت شرق – غرب گسترش داشته است، بطوریکه تا مقطع 310 محدوده با 6 مستطیل دیگر مورد برداشت قرار گرفته است، محدوده مطالعه شکل T بوده و مختصات محدوده آن با توجه به نقشه موقعیت Configuration Map عبارتست از :

$$E = \begin{cases} x = 503730 & \{x = 503712 & \{x = 503432 & \{x = 503191 \\ F & G & H \\ \{Y = 3584756 & \{Y = 3583886 & \{Y = 3583837 & \{Y = 3581640 \\ Y = 3581640 & \{Y = 3583837 & \{Y = 3581640 \\ Y = 3581640 & Y = 3$$

محدوده مورد مطالعه درنقشه زمین شناسی با مقیاس 1/20/000 نقشه شماره A3 ارائه گردیده است. پس از بررسی نتایج و بر مبنای تفسیرهای انجام شده و تعیین آنومالی های مقاوم الکتریکی RS تعداد 13 شبه مقطع با آرایه دوقطبی – دوقطبی Bipole-Dipole از برخی مراکز آنومالی ها که با رگه های سیلیسی انطباق داشت تهیه گردیده است ، کلا" در این منطقه 3600 اندازه گیری بعمل آمده است که تعداد 1542 اندازه گیری با آرایه رکتانگل و 2058 اندازه گیری با آرایه داپیل – داپیل برداشت گردیده است ، درنقشه شماره Las مینرالیزه ومحل حفاری های اندازه اندازه گیری و شبه مقاطع و اطلاعات دیگر از جمله زون های مینرالیزه ومحل حفاری های اکتشافی پیشنهادی ارائه گردیده است، نتایج بصورت نقشه های تغییرات شارژ ابیلیته،مقاومت ویژه و شبه مقاطع خامIP و RS با تصحیح توپو گرافی و مقاطع مدلسازی شده تهیه و مورد تفسیر قرار گرفته است ،در زیر به بررسی نتایج بدست آمده پرداخته می شود.

قبل از ارائه تفسیرهای انجام شده یادآوری می گردد که چون مبنای مطالعات بر مشخص کردن لایه های سیلیسی مینرالیزه در این محدوده است و این لایه ها که در داخل شیل ها قرار گرفته در نقشه تغییرات مقاومت الکتریکی بصورت آنومالی های مقاوم الکتریکی ظاهر می شوند لذا ابتدا نقشه تغییرات مقاومت الکتریکی (نقشه های شماره AA-2 و KB-2) مورد بررسی قرار گرفته و زون های آنومالی مقاوم الکتریکی که حالت رگه مانند دارند زون بندی شده و محدوده آنها با شماره Z1، Z2، ... و Z1 نامگذاری شده اند . مشخصات هر یک از این زون ها مورد بحث قرار گرفته و همزمان تغییرات شارژابیلیته برای هر زون از نقشه تغییرات شارژابیلیته (نقشه های شماره AA-2 و AA-2) که محدوده زون های آنومالی RS نیز در آنها نشان داده شده مورد بحث قرار گرفته و نتیجه گیری بعمل آمده است.لازم به توضیح است که تغییرات مقاومت الکتریکی و شارژابیلیته منطقه در کنار هم و در نقشه های جداگانه AA-2 و KA-2 ارائه گردیده اند.

نکته دیگری که به آن اشاره می شود درمورد تعیین گسل ها و همبری های احتمالی است، تعیین همبری ها و گسل های احتمالی بر مبنای روند خطوط هم مقاومت الکتریکی است و در مواردی هم خطوط شارژابیلیته می توانند وجود برخی گسل ها و همبری های احتمالی را نشان بدهند ، نتیجتا" چون این گسل ها و همبری ها از دو فاکتور فیزیکی جداگانه استنباط می شوند مطابقت کامل با یکدیگر ندارند ضمنا" با توجه به اینکه لایه سیلیسی در شیل ها قرار گرفته دارای چین خوردگی محلی بوده و احتمالا" تکرار نیز شده اند لذا خطوط هم مقاومت الکتریکی تغییرات زیادی دارد و می توان همبری و یا گسل های احتمالی زیادی را مشخص نمود، در این نقشه همبری ها و گسل های احتمالی بارز نشان داده شده است، با نقشه تهیه شده ،زمین شناسان می توانند شکستگی ها و گسل های دیگری را بر مبنای خطوط هم مقاومت الکتریکی در سر زمین ردیابی و پی گیری نمایند.

لازم به ذکر است که نقشه های تغییرات مقاومت الکتریکیRS وشارژابیلیتهIP ابتدا با مقیاس 1/5000 تهیه گردید، ولی برای تفکیک آنومالی های مقاوم الکتریکی نقشه هابا مقیاس 2000 / و در دو قسمت ارائه گردیده و تفسیرها براین نقشه ها انجام شده است .با این نگرش تفسیرهای انجام شده برای نقشه های تغییرات مقاومت الکتریکی RS و شارژابیلیته IP ارائه می گردد. ممارہ (RS) אוט شمارہ (RS) אוט יقشہ تغییر ات مقاومت الکتریکی (RS) א
 - 1 – 7 אוט יقشہ (RS) א $\mathbf{2}\text{-}\mathbf{K}\mathbf{A}$

مقاومت الکتریکی منطقه زیرپوشش دارای طیف وسیعی از 20 اهم متر تا 1100 اهم متر است علت آن هم وجود شیل ها و ماسه سنگ های ژوراسیک ، آهک های کرتاسه و سنگ های ولکانیکی داخل شیل ها می باشد ، مقیاس رنگ تغییرات آن را بخوبی نشان می دهد، محدوده های با مقاومت های الکتریکی کم ، متوسط ، زیاد و خیلی زیاد با مقیاس رنگ در نقشه مشخص هستند، در محدوده مقاطع 00 تا 220 که وسعت محدوده 2200 × 300 متر مربع است، در (نقشه شماره KA-2) فاصله بین مقاطع 100 و 255 (فاصله ایستگاه های 100 تا 180) ظاهر شدن زون بسیار مقاوم الکتریکی در رابطه با آهک های کرتاسه لغزشی است که از ارتفاعات غربی روی شیل های ژوراسیک لغزیده است، همچنین در برخی نقاط مقاومت الکتریکی بصورت پراکنده خیلی بالا است، در قسمتهای دیگر مقاومت الکتریکی در رابطه با شیل ها و محدوده رگه های سیلیسی است که در نقشه تغییرات مقاومت الکتریکی با مقیاس 1/2000 جداسازی و از شماره ۲۵ تا ۲۵ تا 20 تا 20 زون بندی شده تو موراسیک لغزیده است، مقاومت الکتریکی در رابطه با شیل ها و محدوده رگه های سیلیسی است که در نقشه تغییرات مقاومت الکتریکی با مقیاس 1/2000 جداسازی و از شماره ۲۵ تا 100 تا 20 تا 20 تا 20 تا 20 نفی بندی شده تو نو نسیار مقاومت

با توجه به روند خطوط تغییرات مقاومت الکتریکی گسل های F3 ، F2 ، F1 و F4 در این محدوده تفکیک گردیده است ، اثرات این گسل ها بصورت جابجا برخی از محدوده های مقاوم الکتریکی مترادف با رگه های سیلیسی نیز در نقشه دیده می شود.

در محدوده شمالی منطقه بین مقاطع 225 تا 310 که وسعت منطقه 850 × 880 مترمربع است (نقشه شماره 2-KB) مقاومت الکتریکی به جز قسمت شمال شرقی منطقه دارای تغییرات آرام بوده و زون های مقاوم الکتریکی در ارتباط با رگه های سیلیسی بخوبی مشخص می باشند. در محدوده شمال غربی مقاومت الکتریکی بسیار زیاد و در قسمتی بین مقاطع 280 تا 295 در فاصله ایستگاه های 40- تا 120 مقدار آن به حداکثر بیشتر از 1000 اهم متر میرسد در این منطقه سازندهای دیگر از جمله سازندهای ولکانیکی مشاهده می شوند ، در این منطقه نیز گسل های احتمالی F5 ، F6 و F7 ردیابی شده اند ، لازم به توضیح است که گسل ها ، شکستگی ها و یا همبری های احتمالی دیگری نیز میتوان از خطوط هم مقاومت الکتریکی استنباط نمود .

نقشه شماره K-K با مقیاس 1/10000 تغییرات مقاومت الکتریکی منطقه را نشان می دهد . در زیر به بررسی محدوده های آنومالی RS تفکیک شده Z11 تا Z11 پرداخته و همزمان تغییرات شارژابیلیته این زون ها نیز مورد تفسیر قرار می گیرد. برای این منظور محدوده زون های آنومالی های مقاوم الکتریکی Z11 تاZ1 در نقشه تغییرات شارژابیلیته نیز آورده شده تا نتایج بهتر مورد تفسیر قرار گیرد.

Z2 ، Z1 ، Z1 و RS و N= ۱ – ۱ – بررسی محدوده آنومالی های مقاوم الکتریکی RS زون های ای Z2 ، Z1 و Z2 - ۱ – ۱ – ۷ (نقشه شماره 2-KA)

این زون ها در مستطیل های II ، II و III واقع شده اند و موقعیت و مشخصات هرکدام از آنها بصورت زیر می باشد.

محدوده آنومالی Z1 بصورت یک زون آنومالی مقاوم الکتریکی رگه مانند از مقطع 00 تا 251 مشخص شده است، طول آن 1250 متر و پهنای متوسط این رگه تا مقطع 40 ،20 تا 30 متر است. یادآور می گردد که در قسمت جنوب این زون بین مقاطع 10 و 30 نیز یک زون مقاوم الکتریکی مشخص شده که Z1 نامگذاری شده و شاخه ای از آنومالی Z1 تلقی گردیده است، از مقطع 40 تا ممشخص شده که مال تا مقطع 40 متر می مشخص شده که مالخاری شده و شاخه ای از آنومالی Z1 تلقی گردیده است، از مقطع 40 تا مع مع مشخص شده که مال تا مقطع 40 متر است. مشخص شده که مال تا مگذاری شده و شاخه ای از آنومالی Z1 تلقی گردیده است، از مقطع 40 تا مقطع 40 تا مشخص شده که عالی زیاد و حداکثر به 100 متر می رسد . آثار مینرالیزاسیون بصورت اکسید مقطع 215 عرض آنومالی زیاد و حداکثر به 100 متر می رسد . آثار مینرالیزاسیون بصورت اکسید موی در فاصله مقاطع 15 تا 25 ، 40 و 85 تا 95 مشاهده می شود که محل آنها در نقشه AA-2 نشان داده شده است ، این رگه در محدوده مقطع 40 تحت تاثیر عملکرد گسل احتمالی F1 قرار گرفته و تغییر امتداد داده است ، این گسل احتمالی دارای جهت شمال شرق – جنوب غرب می باشد، تغییرات په پهنای رگه سیلیسی ردیابی شده در نقاط مختلف احتمالا" بعلت چین خوردگی محلی یا در اثر شکستگی ها و تغییر شیب آن می تواند تفسیر گردد.

محدوده بسیار مقاوم الکتریکی که در فاصله مقاطع 100 تا 130 مشخص شده اثر آهکهای کرتاسه است که از ارتفاعات غربی روی شیل ها لغزیده است و احتمالا" رگه سیلیسی در زیر آن مدفون شده است زیرا با توجه به نقشه Z-KA دیده می شود که زون آنومالی Zl در ادامه بطرف شمال پس از محدوده این آهکها بصورت زون آنومالیZ4 ظاهر گردیده است. احتمال وجود گسل F2 و F3 بر مبنای روند خطوط هم مقاومت الکتریکی نتیجه گیری شده است.

 محدوده آنومالی Z2 بین مقطع 40 تا مقطع 90 و در غرب زون آنومالی Z1 واقع شده است ، طول آن 500 متر و پهنای محدوده مقاوم الکتریکی بین 20 تا 40 متر متغیر است ، آثار مینرالیزاسیون در محدوده مقاطع90 و 95 در ایستگاه های 120 تا 160 مشاهده می شود. احتمال وجود گسل F2 با جهت شمال شرق – جنوب غرب که زون های آنومالی Z1 ، Z2 و Z3 را قطع می کند وجود دارد.
 محدوده آنومالی Z3 در غرب آنومالی Z2 و بین مقاطع 30 از مستطیل I تا مقطع 65 از مستطیل I
 محدوده رگه مانند Z3 و Z5 در این زون مشاهده می شود ، این رگه ها در اثر عملکرد گسل F2 دارای پیچ خوردگی و یا قطع شدگی می باشند، پهنای رگه های مشخص شده حدود 20 متر می باشد.

Z3 و Z3 ، Z1 های آنومالی های شارژابیلیته زون های آنومالی های Z1 ، Z1 و Z3 و Z3
 (نقشه شماره A-۱ – ۷ (نقشه شماره A)
 (نقشه شماره III و III و III و III شارژابیلیته در مستطیل های شماره I ، II و III و III بررسی و با آنومالی های مقاوم الکتریکی زون های Z2 ، Z1 و Z3

آمده است.

با توجه به نقشه تغییرات شارژابیلیته و انطباق آن با زون های آنومالی RS در مستطیل های شماره I، II و III ، دیده می شود که تغییرات آن عموما" بجز غرب مقطع 70 (نقطه 280) ، بین 2mv/v تا 12mv/v متغیر است، اگر روند آنومالی Zl در این نقشه پی گیری شود با توجه به زون های مینرالیزه دیده می شود که محدوده هائی که بصورت آنومالی PI کم شدت که طیف رنگ آنها را بخوبی مشخص می کند انطباق نسبی با زون های آنومالی مقاوم الکتریکی Zl دارند، این انطباق نسبی در محدوده زون های مینرالیزه ای که در نقشه مشخص شده بخوبی قابل مشاهده است، از آنجمله محدوده مقاطع 10 و 20 بترتیب در ایستگاه های 160 و 140 ، محدوده مقاطع 40 و 45 بترتیب ایستگاه های 120 تا 140 و 100 که زون های مینرالیزه نیز در آن ناحیه دیده می شود را می توان ذکر نمود، این مورد در مقطع شماره 85 ، 90 ،59 و 100 نیز مشاهده می شود، مقدار شارژابیلیته در زون های مینرالیزه نسبتا" زیاد است که می تواند در رابطه با مینرالیزاسیون رگه های سیلیسی باشد.

در زون شماره Z2 نیز انطباق نسبی بین محدوده هائی با شارژابیلیته نسبتا" زیاد و رگه های مقاوم الکتریکی وجود دارد از آنجمله محدوده مقطع 60 نقطه 120 را می توان ذکر نمود . محدوده ای نیز در منتهی الیه غرب مقطع 70 نقطه 280 ردیابی شده که شارژابیلیته آن به حداکثر 14mv/v میرسد.

در ادامه بررسی تغییرات شارژابیلیته ، در شمال مستطیل III و محدوده مقطع 125 ،محدوده ای با شارژابیلیته نسبتا" زیاد ردیابی شده که با مینرالیزاسیون منطقه مطابقت دارد، این منطقه مطابقت خوبی با آنومالی زون شماره Z5 دارد ، نقاط دیگری بصورت محدود و کم وسعت با شارژابیلیته نسبتا" زیاد و بصورت پراکنده در نقشه وجود دارد که دارای گسترش زیادی نیستند.

در زون شماره Z₃ دو رگه سیلیسی مشخص شده است ،در مقطع 55 در نقاط 200 تا 220 مقدار شارژابیلیته نسبتا" زیاد است که با رگه سیلیسی منطبق است و کلا" انطباق زون های با شارژابیلیته زیاد با رگه های سیلیسی در این زون تطابق نسبی است . می توان گفت که در طول رگه های سیلیسی تفکیک شده آنومالی های شارژابیلیته بصورت محورهائی که مطابقت کامل با آنومالی های مقاوم الکتریکی داشته باشند وجود ندارد ولی انطباق محلی و نسبی در بسیاری موارد دیده می شود.با توجه به روند خطوط هم شارژابیلیته گسل های احتمالی F1 ، F1 و F3 که مترادف با گسل های ردیابی شده در نقشه تغییرات مقاومت الکتریکی است نتیجه گیری شده است.

Z5 و Z4 و Z5 - ۷ - ۳ - بررسی محدوده آنومالی های مقاوم الکتریکی RS زون های Z4 و Z5 (نقشه شماره 2-۲ - ۲) (نقشه شماره 2-KA)

محدوده آنومالی مقاوم الکتریکی Z4 در مستطیل <u>IV</u> و بین مقاطع 135 و 170 واقع شده و بصورت رگه مانند با طول 350 متر و با پهنای 20 تا 25 متر در نقشه مشخص شده است، این رگه از جنوب منطقه در زیر محدوده آهکهای کرتاسه(لغزشی) بطرف جنوب ادامه پیدا کرده و احتمالا" به محدوده زون Z1 می پیوندد، در قسمت شمال این زون ،آثار مینرالیزاسیون در محدوده مقطع 165 ایستگاه 160 مشاهده می شود.

محدوده آنومالی مقاوم الکتریکی Z5 از مقطع شماره 110 در شرق مستطیل شماره III و محدوده آنومالی مقاوم الکتریکی Z5 از مستطیل <u>VIII</u> (نقشه شماره G-KB)محدود می شود، محدوده گسل F3 شروع و به مقطع 275 از مستطیل <u>VIII</u> (نقشه شماره G-KB)محدود می شود، طول آن تقریبا 1650 متر و پهنای متوسط آن عموما" 20 تا 30 متر می باشد، این آنومالی مقاوم الکتریکی که بصورت یک رگه ظاهر شده تغییراتی در امتداد آن در بین مقاطع 180 تا 200 و محدوده مقاطع 200 از محدوده می باشد، این آنومالی مقاوم الکتریکی که بصورت یک رگه ظاهر شده تغییراتی در امتداد آن در بین مقاطع 65 و 65 و یا در بین مقاطع 180 تا 95 و محدوده مقاطع 180 تا 95 و 55 و 56 و یا در محدوده مقاطع 100 محدوده مقاطع 100 تا 95 و 56 و یا محدوده مقاطع 180 تا 95 و 150 در در محدوده مقاطع 150 تا 95 و 56 و یا در در محدوده مقاطع 150 محدوده مقاطع 150 تا 95 و 56 مالک در محدوده مقاطع 150 تا 95 و 56 مالک در محدوده مقاطع 150 محدوده مالکرد گسل های عرضی 55 و 56 و یا در در محدوده مقاطع 150 محدوده مالکره از 95 محدوده مالکره تا 95 محدوده مالکره با 95 محدوده مالکره با 95 محدوده مالکره در محدوده مالکره از 95 محدوده مالکره محدوده مالکره با 95 محدوده مالکره محدوده مالکره با 95 محدوده مالکره محدوده مالکره با 95 محدوده مالکره با 95 محدوده مالکره محدوده مالکره با 95 محدوده مالکره با 95 محدوده مالکره با 95 محدوده مالکره با 95 محدوده مالک محدوده مالکره با 95 محدوده مالکره با 95 محدوده مالکره با 95 محدوده مالک محدوده مالکه محدوده محدوده محدوده مالکه محدوده محدوده مالکه محدوده محدوده مالکه محدوده محدوده مالکه محدوده محدوده محدوده محد

Z5 و Z4 – ۴ – بررسی محدوده آنومالی های شارژابیلیته در زون های آنومالی هایZ4 و Z5 (نقشه شماره 2۰KA) (نقشه شماره

در محدوده آنومالی مقاوم الکتریکی Z4 که بین مقاطع 130 تا 170 قرار گرفته هیچگونه آنومالی شارژابیلیته مشاهده نمی شود و فقط در محدوده مقطع 155 نقاط 160 تا 180 مقدار شارژابیلیته کمی زیاد است که متاثر از آنومالی شارژابیلیته نقطه 80 از این مقطع می باشد.

در محدوده آنومالی مقاوم الکتریکیZ5 واقع بین مقاطع 110 تا 275 زون های آنومالی شارژابیلیته بصورت زیر ردیابی شده است.

در فاصله مقاطع 110 تا 130 مقدار شارژابیلیته نسبتا" زیاد بوده و دو مرکز آنومالی در مقاطع 105 و 125 با شدت شارژابیلیته 10mv/v ردیابی شده است ، این محور آنومالی شارژابیلیته انطباق نسبی با آنومالی Z5 در این منطقه دارد همچنین در طول مقطع 155 نیز مقدار شارژابیلیته به حداکثر 12mv/v می رسد که گسترش آن بین مقاطع 150 تا 160 در نقشه مشاهده می گردد.

بین مقطع 170 تا 215 مقدار شارژابیلیته زیاد شده و چهار مرکز آنومالی شارژابیلیته قابل تفکیک در این محدوده دارای مشخصات زیر می باشند.

 محدوده آنومالی IP درمقطع 180 که مرکز آن با شدت شارژابیلیته 10 mv/v در نقطه 60 واقع شده است. این محدوده بین مقاطع 175 و 190 گسترش داشته و تطابق نسبی با رگه مقاوم الکتریکی دارد.

- محدوده آنومالیIP در مقطع 190 با شدت شارژابیلیته 15mv/v که مرکز آن در ایستگاه شماره100 از مقطع 190 واقع شده است ، این محدوده آنومالی بین مقاطع 185 و 200 گسترش داردو با آنومالی RS انطباق نسبی کامل دارد.

- محدوده آنومالیIP واقع در مقطع 200 با شدت شارژابیلیته 16mv/v که مرکز آن در ایستگاه شماره0از مقطع 200 واقع شده و گسترش آن بین مقاطع 200 و 210 در جهت شمال غرب می باشد و مطابقت نسبی با محدوده های آنومالی مقاوم الکتریکی دارد.

- محدوده آنومالیIP واقع در مقطع 210 با شدت شارژابیلیته 16mv/v که بین نقاط 20 تا 40 اندازه گیری شده مطابقت نسبی با زون آنومالی مقاوم الکتریکی دارد.

از مقطع 220 تا مقطع 275 آنومالی Z5 RS وارد در محدوده ای می شود که مقدار شارژابیلیته در آن محدوده نسبتا" زیاد می شود و احتمالا" تغییر سازندها می تواند در این رابطه تاثیر گذار باشد ، همانگونه که در نقشه KB-K دیده می شود در مسیر رگه آنومالی Z5 RS یین مقاطع 245 و 275 یک محور آنومالی شارژابیلیته مشخص شده است ، این محور شارژابیلیته از مقطع 235 تا 275 در نقشه قابل مشاهده است و دارای مراکز متعددی است ، مراکزی در مقطع 250 و 260 (نقاط 100-) انطباق کامل با آنومالی BS یا رگه 25 دارد و در فاصله مقاطع 245 تا 275 این محور شارژابیلیته با آنومالی Z5 RS انطباق کامل دارد. قابل ذکر است که در منطقه شمال شرق مستطیل <u>VIII</u> مقدار شارژابیلیته به حداکثر 20mv/v می رسد که در رابطه با تغییر سازندها از جمله سنگ های ولکانیکی میتواند باشد.

۷ – ۱ – ۵ – بررسی محدوده آنومالی های مقاوم الکتریکیRS زون های Z۵ تا Z11 نقشه های شماره 2-KA وKB 2-KA و

محدوده آنومالی Z6 ازمقطع 180 و از جنوب مستطیل <u>V</u> شروع و تا مقطع 255 از مستطیل <u>VI</u> ادامه دارد طول آن حدود 750 متر و عرض متوسط آن20 تا 25 متر می باشد.مسیر و امتداد این زون توسط گسل های احتمالی F5 و F6 قطع شده است. محدوده آنومالی Z7 ازمقطع 220 شمال مستطیل <u>V</u> شروع تا مقطع 285 ادامه دارد، طول آن 450 محدوده آنومالی Z7 ازمقطع 230 متر می باشد ، آثار مینرالیزاسیون درمحدوده مقاطع 230 و 450 متر و عرض متوسط آن20 تا 250 متر می باشد ، آثار مینرالیزاسیون درمحدوده مقاطع 230 در امر مینرالیزاسیون درمحدوده مقاطع 230 متا متر و عرض مشاهده می شود.در محدوده مقطع 230 و 260 در اثر عملکرد گسل های F5 و F6 تغییری در امتداد رگه ها مشاهده می گردد.

محدوده آنومالی Z7a در فاصله مقاطع 265 تا 275 واقع شده و طول آن 100 متر می باشد ، در مقطع 275 در فاصله ایستگاه های 0 تا 20- آثار مینرالیزاسیون مشاهده می شود.

محدوده آنومالی Z8 بین مقطع 245 و مقطع 310 واقع شده و طول آن 650 متر است و در محدوده مقاطع 255 تا 265 پهنای آن به حداکثر 60 متر می رسد ، در محدوده های دیگر پهنای رگه حدود 20 تا 25 متر است.در محل مقطع 265 در اثر عملکرد گسل F7 تغییری در امتداد آنومالی Z8 مشاهده می شود.این آنومالی از طرف شمال مقطع 310 محدود نشده و احتمالا" بطرف شمال ادامه دارد.

محدوده آنومالی Z9 بین مقاطع 245 و 310 و در غرب منطقه واقع شده طول آن 650 متر و عرض آن بین 10 تا 40 متر متفاوت است.این رگه در محدوده مقاطع 260 و 285 در اثر عملکرد گسل های F7 و F8 جابجائی دارد.

محدوده آنومالی Z10 در فاصله مقاطع 265 و 310 واقع شده و طول آن 450 متر و عرض آن بین 10 تا 30 متر متفاوت است این محدوده آنومالی از طرف شمال ادامه دارد.آثار مینرالیزاسیون در مقطع 285 نقطه 180 مشاهده می شود.

محدوده آنومالی Z11 در فاصله مقاطع 300 و 310 واقع شده و از طرف شمال ادامه دارد , پهنای آن30 تا 35 متر می باشد.

Z11 تا Z6 – ۶ – بررسی محدوده آنومالی های شارژابیلیته در زون های آنومالی Z6 تا Z11 نقشه های شماره KA وZ-KB نقشه های شماره

درمحدوده آنومالی Z6 مقدار شارژابیلیته ازمقطع 180 تا 255 کم می باشد و هیچ نوع آنومالی شارژابیلیته در محدوده آنومالی RS مشاهده نمی شود.

در محدوده آنومالی Z7 مقادیر شارژابیلیته به جز مقطع 250 نسبتا" زیاد است، در طول این رگه مراکز آنومالی شارژابیلیته از جمله درمقطع 230 ایستگاه 120 (محدوده مینرالیزه) ،در مقطع 240 ، ایستگاه 80 و مقطع 285، ایستگاه 40 (محدوده مینرالیزه) با آنومالیZ7 مطابقت دارد، مقدار شارژابیلیته در این مراکز 13mv/v بوده و انطباق خوبی بین محدوده های با شارژابیلیته زیاد و آنومالی مقاوم الکتریکی Z7 وجود دارد.

در محدوده آنومالی Z7aو در محدوده زون مینرالیزه مقدار شارژابیلیته نسبتا" زیاد است.

در محدوده آنومالی Z8 نیز مقدار شارژابیلیته نسبتا" زیاد است و مراکز آنومالی ها در مقطع 245 ،نقطه 160 ، مقطع 265 ،نقطه 160 درمسیر این رگه قرار دارند و با توجه به نقشه تغییرات شارژابیلیته مطابقت آنومالی IP و RS بسیار مشخص و گویا است.

در محدوده آنومالی Z9 بین مقاطع 270 و 285 محور آنومالی شارژابیلیته انطباق کاملی با این قسمت از آنومالی RS دارد و مرکز آنومالی شارژابیلیته در مقطع 280 نقطه 360 و مقطع 270 نقاط 320 تا 360 در طول این رگه قرار دارند. درمقطع 305 نقطه 300 نیز مقدار شارژابیلیته نسبتا" زیاد است.

در محدوده آنومالی Z10 مراکزی با شارژابیلیته نسبتا" زیاد از جمله مقطع 270، نقطه 500 (محدوده مینرالیزه) ، مقطع 285 نقطه 460 ، مقطع 310 نقطه 460 در مسیر این زون آنومالی مقاوم (محدوده مینرالیزه) ، مقطع 285 نقطه 460 ، مقطع 310 نقطه 460 در مسیر این زون آنومالی مقاوم الکتریکی قرار دارند و نهایتا" محدوده ای با شارژابیلیته زیاد که حداکثر آن 11mv/v است با آنومالی RS تطابق خوبی دارند.

محدوده Z11 مطابقت کاملی با زون آنومالی شارژابیلیته دارد، مرکز آنومالی درمقطع 310 نقطه 360 کاملا" با آنومالی RS مطابقت دارد، هر دو آنومالی RS و IP در قسمت شمال محدود نشده و ادامه دارند.

2-KB بررسی کلی نقشه تغییرات شارژابیلیته نقشه های شماره - V – - - V – - V – V – - V

رسی تغییرات شارژابیلیته در محدوده آنومالی های RS در زون های Z1 ، Z2 ،...و Z1 همزمان با ارائه مشخصات این زون ها انجام گرفت ولی اگر این نقشه ها با دید کلی مورد مطالعه قرار گیرد نتایج بصورت زیر خواهد بود.

در محدوده مقاطع 00 تا 235 که برداشت ها درمستطیل های I تا <u>V</u> انجام گرفته تغییرات شارژابیلیته بین 2mv/v تا 20mv/v متغیرمی باشد ، همانگونه که در نقشه دیده می شود محدوده ای با شارژابیلیته حداکثر 10mv/v بصورت محورهائی تفکیک گردیده که مقیاس رنگ آنها را بخوبی نشان می دهد ، این مناطق در برخی موارد با زون های مینرالیزه واقع در محدوده رگه های سیلیسی مطابقت دارند و عمدتا" میتوان این مناطق را بصورت محدوده های زیر تفکیک نمود.

- محدوده بین مقاطع 40 تا 50 و 50 تا 70 ، این دو محدوده بوسیله گسل های احتمالی F1 و
 F2 محدود و از یکدیگر تفکیک شده اند.
- محدوده بین مقاطع 85 تا 110 و 110 تا 130 که احتمالا" مربوط به یک محور آنومالی بوده ولی در اثر عملکرد گسل F3 از یکدیگر جدا شده اند.

- محدوده مقطع 155 مرکز آنومالی در نقاط 80 تا 100 و در محدوده آنومالی Z5 واقع شده
 است.
- محدوده مقاطع 170 تا 215 ، این محدوده شامل زون آنومالی مقاوم الکتریکی Z5 بوده و مراکز آنومالی IP در مقاطع 190 ، 210 و 220 و درمحدوده Z5 قرار دارند ،حداکثر مقدار شارژابیلیته 20mv/v درمقطع 200 ایستگاه 0 اندازه گیری شده است .

درمنطقه مقاطع 235 تا 310 که شامل مستطیل های <u>VI</u> تا <u>XI</u> می باشد مقدار شارژابیلیته از 2mv/v تا حداکثر 30mv/v تغییر می کند، با توجه به محدوده آنومالی های RS که در این نقشه آورده شده دیده می شود که مقدار شارژابیلیته برای زون های آنومالی Z5 تا Z11 نسبتا" زیاد است و برخی مراکز شارژابیلیته دراین محدوده ها قرار گرفته اند، با توجه به نقشه، برخی محورهای آنومالی شارژابیلیته بصورت زیر قابل تفکیک هستند.

- محدوده های بین مقاطع 235 تا 280 واقع در شرق منطقه AXE I
- محدوده های بین مقاطع 255 تا 310 بین نقاط 0 تا 60 AXE II
- محدوده های بین قاطع 265 تا 310 بین نقاط 320 تا AXE III 420
- محدوده بزرگی در قسمت شمال منطقه با شارژابیلیته حداکثر 30mv/v بین مقاطع 250 تا
 310 که احتمالا" تغییر سازند دلیل بر ظاهر شدن این آنومالی بزرگ و وسیع گردیده
 مXE <u>IV</u>

نقشه شماره K-K تغييرات شارژابيليته محدوده مطالعاتي را با مقياس 1/10000 نشان مي دهد.

۸ – بررسی شبه مقاطع

شبه مقاطع بمنظور بررسی گسترش آنومالی ها در عمق تهیه می گردد، در محدوده گردنه رخ آنومالی های مورد توجه ، آنومالی های مقاوم الکتریکی RS هستند ، نقشه شماره 2-k تغییرات مقاومت الکتریکی منطقه را با آرایه مستطیلی نشان می دهد، در تفسیرهای انجام شده برای مشخص کردن رگه های سیلیسی، آنومالی های RS بصورت زون بندی که حالتهای رگه ای را نشان می دهد تقسیم گردید و با شماره های Z1 ، 22 ، ... و Z1 در نقشه نشان داده شد که مشخصات آنها مورد بحث و بررسی قرار گرفت، تعداد 13 شبه مقطع در این محدوده ها که بنظر جالب بوده تهیه گردیده است، سعی بر این بوده که این شبه مقاطع ، گسترش این زون های آنومالی را در عمق مشخص نماید.

برای هر شبه مقطع سه نقشه ارائه شده است، نقشه اول شامل شبه مقطع یا تصحیح توپو گرافی می باشد، نقشه دوم مقاطع مدلسازی شده IP و RS را نشان می دهد و کلیه تفسیرها بر مبنای این مقاطع انجام گرفته است، در شبه مقطع خام و مقطع مدلسازی شده محل و محدوده زون های آنومالی مقاومت الکتریکی بر گرفته از نقشه تغییرات مقاوم الکتریکی نیز آورده شده تا مقایسه ای بین نتایج شبه مقاطع خام با تصحیح توپو گرافی و محدوده زون های آنومالی مقاومت الکتریکی بر گرفته از نقشه تغییرات مقاومت الکتریکی نیز آورده شده تا مقایسه ای بین نتایج شبه مقاطع فام و محدوده زون های آنومالی مقاومت الکتریکی بر گرفته از نقشه تغییرات مقاوم الکتریکی نیز آورده شده تا مقایسه ای بین نتایج شبه مقاطع خام با تصحیح توپو گرافی و تغییرات مقاومت الکتریکی با آرایه مستطیلی و مقاطع مدلسازی انجام شده و محل گمانه های اکتشافی تعیین گردد و بالاخره نقشه سوم مقاطع مدلسازی شده با مشخصات نرم افزاری را نشان می دهد.

همانگونه که گفته شد برای هر شبه مقطع یک یا دو گمانه اکتشافی در نظر گرفته شده و مشخصات هر یک از گمانه ها شامل محل حفاری ، طول حفاری ، آزیموت و شیب آن ارائه گردیده است. در جدول زیر شماره مقاطع ، محل ابتدا و انتهای مرکز خط جریان AB ، مقدار a و جهش ایستگاهی هر شبه مقطع ارائه گردیده است.

جهش ایستگاهی	AB=MN=a	ابتدا و انتهای مرکز خط	شماره مقطع	رديف
(BOND)		جريان AB		
10متر	20متر	نقاط 20- تا 50	15	1
20متر	20متر	نقاط 60- تا 80	95	2
20متر	20متر	نقاط 60- تا 80	125	3
20متر	20متر	نقاط 20- تا 120	165	4
20متر	40متر	نقاط 120- تا 70	200	5
10متر	30متر	نقاط 75- تا 75	210	6
20متر	20متر	نقاط 60- تا 120	235	7
20متر	20متر	نقاط 80- تا 80	240	8
20متر	20متر	نقاط 60 تا 120	245	9
20متر	20متر	نقاط 150- تا 60-	250	10
20متر	20متر	نقاط 150- تا 60-	255	11
20متر	20متر	نقاط 80- تا 50	260	12
20متر	20متر	نقاط 400- تا 220-	265	13
1				1

موقعیت و مشخصات شبه مقاطع برداشت شده

5-k2 و 5-k1، 5-k بررسی شبه مقطع 15 نقشه های شماره 1-k 5-k و 1-8

این شبه مقطع بمنظور بررسی آنومالی RS (Zia) که درمقطع 15 و در فاصله نقاط 30 تا 70 واقع شده انجام گرفته است ، مختصات شبه مقطع AB=MN=20 متر و جهش ایستگاهی آن 10 متر بوده و اندازه گیری ها ازنقطه 20- تا نقطه 50 انجام گرفته است ، آثار مینرالیزاسیون در ایستگاه 140 مشاهده شده است.

شبه مقطع خام با تصحیح توپو گرافی در نقشه شماره k-5 و مقاطع مدلسازی و هموار شده در نقشه های k1 و k2-5 نشان داده شده اند.

در شبه مقطع خام، آنومالی مقاوم الکتریکی بین نقاط 50 و 80 ظاهر شده که مطابقت نسبی با محدوده مقاوم الکتریکی Z1a در آرایه رکتانگل دارد. درشبه مقطع خام IP در محدوده آنومالی Z1a و در عمق مقدار شارژابیلیته نسبتا" زیاد می گردد .

در مقطع مدلسازی RS آنومالی مقاوم الکتریکی در فاصله نقاط 30 تا 70 با آنومالی ۲۵ مطابقت کامل دارد، شیب لایه مقاوم الکتریکی کم و بطرف شمال غرب می باشد که با زمین شناسی منطقه نیز همگونی دارد، همبری های F1 و F2 محدوده این زون مقاوم الکتریکی را نشان می دهد.یک محدوده مقاوم الکتریکی ایز بین نقاط 5 و 55 و در عمق مشخص گردیده است که می تواند رگه دیگری نیز قلمداد گردد این محدوده در عمق و بطرف شمال غرب ادامه دارد.

در مقطع مدلسازی IP در محدوده زون Z1a در لایه های سطحی مقدار شارژابیلیته کم ولی در عمق نسبتا" زیاد می گردد، با توجه به زمین شناسی منطقه و تلفیق آنها انجام یک گمانه اکتشافی در نقطه 55 با مشخصات زیر پیشنهاد می شود.

شيب	آزيموت	طول	Y	X	نقطه	مقطع	رديف
		حفاري					
50°s.e	N100°e	50	3581804	503144	55	15	BH1

6-K2 و -K1، 6-K – K – K – K – K – K – K – K – 6 – K

این شبه مقطع با مشخصات AB=MN=20 متر و جهش ایستگاهی 20 متر برای بررسی آنومالی مقاوم الکتریکی زون Z1 که در فاصله نقاط 20 تا 140 واقع شده انجام گرفته است، دراین زون آثار مینرالیزاسیون در فاصله نقاط 60 تا 100 مشاهده می شود، در نقشه شماره K-6 شبه مقاطع خامRS و IP باتصحیح توپو گرافی نشان داده شده و در نقشه های شماره K1-6 و K2-6 مقاطع مدلسازی شده ارائه گردیده اند، محدوده زون مقاوم الکتریکی Z1 (در فاصله نقاط 20 تا 140 نقشه (شماره 2-k) در مقاطع مدلسازی و شبه مقطع نشان داده شده است. برداشت ها از نقطه 60- تا 80 انجام گرفته است.

در شبه مقطع خام RS زون وسیعی بصورت آنومالی مقاوم الکتریکی بین نقطه 20 و 110 مشخص شده است که مقاومت الکتریکی در این زون حداکثر 450 اهم متر است و از طرف شمال غرب محدوده نشده است، در قسمت دیگر زون های هادی الکتریکی با مقاومت الکتریکی کمتر از 60 اهم متر ظاهر شده اند.

در جنوب شرق شبه مقطع IP یک محدوده آنومالی ضعیف بین نقاط 30- و 10 مشخص گردیده که در مقطع شماره 90 و در نقطه 10 در نقشه KA-2 نیز ظاهر گردیده است. آنومالی ضعیف دیگری با حداکثر 6mv/v بین نقاط 50 تا 70 در قسمت شمال غرب شبه مقطع تفکیک شده است.

در مقطع مدلسازی RS یک زون آنومالی مقاوم الکتریکی در عمق کم بین نقطه 20 تا 110 که مطابقت کامل با آنومالی Z1 دارد مشخص گردیده است هم بری های F1 و F2 محدوده این زون را نشان می دهد ، این آنومالی از طرف شمال غرب ادامه دارد، محدوده بزرگی بین نقاط 50- و 50 در عمق بصورت آنومالی مقاوم الکتریکی ظاهر شده است که احتمالا" در رابطه با تغییر سازند می باشد.

شيب	آزيموت	طول حفاری	Y	X	نقطه	مقطع	رديف
70 s.e	N100°e	60	3582591	503294	50	95	BH ₂

در مقطع مدلسازی IP و در محدوده آنومالی مقاوم الکتریکی Z1 ، آنومالی ضعیف IP با یک مرکز در نقطه 30 مطابقت با زون آنومالی مقطع مدلسازی شده RS دارد، این محدوده آنومالی IP که بطرف شرق ادامه دارد احتمالا" در رابطه با آنومالی مقاوم الکتریکی بزرگی است که در رابطه با تغییر سازند ردیابی شده است ، با توجه به وجود مینرالیزاسیون در این محدوده و همخوانی مقاطع مدلسازی شده و زون آنومالی Z1 انجام یک گمانه اکتشافی در نقطه 50 پیشنهاد می گردد ، مشخصات این دو گمانه اکتشافی بصورت زیر است.

7-K2 و K1، 7-K مای شماره K-K و K-K و -8

این شبه مقطع بطول140 متر از نقطه 60- تا 80 با مختصات 20 =AB=MN متر و جهش ایستگاهی 20 متر تهیه شده و با توجه به نقشه تغییرات مقاومت الکتریکی (AA-2) منظور بررسی زون مقاوم الکتریکی بین نقاط 0 تا 80 از زون مقاوم الکتریکی Z5 بوده است، آثار مینرالیزاسیون در این رگه مقاوم الکتریکی در نقطه 60 مشاهده می شود، همچنین شارژابیلیته آن در این محدوده به حداکثر 10mv/v می رسد که بصورت مرکز آنومالی شارژابیلیته در نقاط 80 و 100 در نقشه تغییرات شارژابیلیته در این مقطع ظاهر شده است (نقشه شماره AA-2)

نقشه شماره K-K نقشه خام با تصحیح توپو گرافی را نشان می دهد و نقشه های K-K و Z-K مقاطع مدلسازی را ارائه می کند، در مقاطع مدلسازی محدوده زون آنومالی های مقاوم الکتریکی Z5 بین نقاط 0 تا 80 بر گرفته از آرایه مستطیلی نیز آورده شده است. در شبه مقاطع خام RS محدوده مقاوم الکتریکی تحZ را شامل می شود ، در شبه مقطع خام مقاوم الکتریکی تحZ را شامل می شود ، در شبه مقطع خام مقاوم الکتریکی تحZ را شامل می شود ، در شبه مقطع خام مقاوم الکتریکی تحZ را شامل می شود ، در شبه مقطع خام RS محدوده نقاط الکتریکی بین نقاط 0 تا 70 آنومالی مقاوم الکتریکی تحZ را شامل می شود ، در محدوده نقاط مقاوم الکتریکی بین نقاط 10 تا 70 و در عمق 60 متر مقدار IP نسبتا" زیاد می شود ، در محدوده نقاط RS تحک رون مقاوم الکتریکی بیشتر از 100 اهم متر دمعدوده نقاط 0 تا 70 و در عمق 60 متر مقدار IV نسبتا" زیاد می شود ، در محدوده نقاط RS ترک تحک وزون مقاوم الکتریکی با مقاومت الکتریکی بیشتر از 400 اهم متر درمحدوده نقاط 0 تا 30 ای 20 الکتریکی بیشتر از 600 اهم متر درمحدوده نقاط 0 تا 30 ای 20 معدوم شده است که گسترش آن تا نقطه 60 ادامه دارد، در آرایه مستطیلی محدوده زون مقاوم الکتریکی که نامی مده است که گسترش آن تا نقطه 60 ادامه دارد، در آرایه مستطیلی محدوده زون مقاوم الکتریکی که ناحیکی که ناحیه میزالیزه را در بر می گیرد بین نقاط 0 و 60 (زون مقاوم الکتریکی همبری های F1 و 2-KA

همانگونه که دیده می شود زون آنومالی Z5 مطابقت خوبی با آنومالی RS در مقطع مدلسازی شده دارد.

در مقطع مدلسازی IP ، آنومالی ضعیف IP بین ایستگاه های 40 تا 90 با مرکزی در زیر نقطه 70 ظاهر شده است که با محدوده آنومالی شارژابیلیته مشخص شده با آرایه رکتانگل و زون مینرالیزه انطباق دارد، ولی در محدوده جنوب شرق ، مقدار شارژابیلیته به حداقل می رسد، با توجه به نتایج حاصله و تطابق آنها با زمین شناسی منطقه، حفر یک گمانه اکتشافی از نقطه 50 بطرف جنوب شرق که می تواند مرکز مقاوم الکتریکی واقع در زیر نقطه 30 را قطع کند پیشنهاد می شود.مشخصات این گمانه اکتشافی بصورت زیر است.

شيب	آزيموت	طول حفاری	Y	X	نقطه	مقطع	رديف
65S.E	N100°E	80متر	3582889	503350	50	125	BH3

8-K2 – 4 – بررسی شبه مقطع 165 نقشه های شماره K1 ، 8-K و K2-8

این شبه مقطع بمنظور بررسی زون آنومالی مقاوم الکتریکی Z5 که بین نقاط 70 تا 110 از مقطع 165 واقع شده انجام شده است، این شبه مقطع از نقطه 30- تا نقطه 110 با مشخصات AB=MN=20 متر و با جهش ایستگاهی 20 متر تهیه گردیده است.

نقشه شماره K-K نقشه خام با تصحیح توپو گرافی را نشان می دهد و نقشه های 8-K1 و 8-K2 نقشه های مدلسازی را ارائه می دهند.

شبه مقطع خام RS زون آنومالی RS بین نقاط 70 و 110 تفکیک شده که با آنومالی Z5 مطابقت نسبی دارد ، شبه مقطع خام IP در محدوده آنومالی RS هیچگونه آنومالی نشان نمی دهد.ولی در عمق مقدار شارژابیلیته در زون وسیعی نسبتا"زیاد می شود.

در مقطع مدلسازی RS در محدوده نقاط 70تا 110 و مطابق با زون آنومالی Z5 منطقه ای با مقاومت الکتریکی زیاد و بیشتر از 700 اهم متر با شیبی بطرف غرب مشخص گردیده است و بدین ترتیب نحوه گسترش زون آنومالیZ5 را در جهت غرب نشان می دهد، با توجه به روند خطوط هم مقاومت الکتریکی همبری های F1, F1 محدوده این زون آنومالی را نشان می دهند که دارای شیبی بطرف غرب بوده و با زمین شناسی منطقه مطابقت دارد.

در مقطع مدلسازی IP در فاصله نقاط 70 تا 110 با توجه به وجود آنومالی شارژابیلیته درمقطع IP در مقطع مدلسازی IP در نقشه 2-Ka مقدار شارژابیلیته بصورت ضعیفی زیاد میگردد که اثر آن در مقطع مدلسازی IP (درنقشه ۲۵ (-2-Ka) مقدار شارژابیلیته بصورت ضعیفی زیاد میگردد که اثر آن در مقطع مدلسازی IP مشخص شده و دارای شیبی بطرف غرب می باشد، همبری های F2 , F1 محدوده آن را نشان می دهد بدین ترتیب انطباق خوبی بین آنومالی IP و آنومالی RS در مقاطع مدلسازی وجود دارد،

برای بررسی این محدوده با توجه به همخوانی شبه مقاطع خام، و مقاطع مدلسازی و همچنین زون آنومالی RS (Z5) و زمین شناسی منطقه انجام یک گمانه اکتشافی در نقطه 110 با مشخصات زیر پیشنهاد می شود.

شيب	آزيموت	طول حفاري	Y	Χ	نقطه	مقطع	رديف
75°e	W-E	70 متر	3583288	503303	110	165	BH4

9-K2 و K1.9-K، 9-K مای شماره 5-8 و -8

این شبه مقطع بمنظور بررسی زون مقاوم الکتریکی Z5 که بین نقاط 30 تا 70 از این مقطع واقع شده انجام گرفته است، این شبه مقطع در بین نقاط 100- و 70 با مشخصات AB=MB متر و با مشده انجام گرفته است، این شبه مقطع در بین نقاط 100- و 70 با مشخصات AB=MB متر و با جهش ایستگاهی20 متر انجام گرفته است، مقدار شارژابیلیته با آرایه مستطیلی در این مقطع و در نقطه می ایستگاهی20 متر انجام گرفته است، مقدار شارژابیلیته با آرایه مستطیلی در این مقطع و در نقطه مقطع و در نقطه میت 20 متر این مقطع و در نقطه مین ایستگاهی20 متر انجام گرفته است، مقدار شارژابیلیته با آرایه مستطیلی در این مقطع و در نقطه 0 به حداکثر 20mv/v می رسد و زون نسبتا" وسیعی بین نقاط 30- تا 40 دارای شارژابیلیته زیاد است. نقشه های شماره K-P و X-P شبه مقطع خام با تصحیحات توپوگرافی را نشان می دهد و نقشه های 10-8 و K-P فیله می کنند .

در شبه مقطع خام RS مقاومت الکتریکی در اکثر نقاط بین350 تا 600 اهم متر متغیر است و در محدوده کوچکی بین نقاط 80- و 20 مقدار آن به حداقل 100 اهم متر میرسد.

در شبه مقطع خام IP ،یک زون با شارژابیلیته زیاد با شیبی بطرف غرب مشخص شده است این مورد در نقشه تغییرات شارژابیلیته ۲۸-2 نیز وجود دارد ،حداکثر مقدار شارژابیلیته به ۱4mv/v می رسد، بین دو آنومالی RS و IP در شبه مقاطع خام تطابق نسبی وجود دارد.

در مقطع مدلسازی RS یک زون آنومالی RS از نقطه 20- شروع شده و تا غرب محدوده ادامه دارد، قسمت های غربی این زون با آنومالیZ5 مطابقت خوبی می کند و همبری F1 محدوده زیرین این زون آنومالی را مشخص می کند.

درمقطع مدلسازی IP حداکثر شارژابیلیته در نقطه 60 واقع شده ولی گسترش آن بین نقاط 0 تا 80 می باشدکه تطابق خوبی با آنومالی Z5 دارد . همانگونه که دیده می شود تطابق خوبی بین آنومالی های RS و IP درمقاطع مدلسازی ، شبه مقاطع و آنومالی Z5 وجود دارد، برای بررسی این آنومالی و گسترش آن در عمق، حفر یک گمانه اکتشافی با مشخصات زیر در نقطه 70 پیشنهاد می شود.

شيب	آزيموت	طول	Y	X	نقطه	مقطع	رديف
		حفاري					
65°е	W-E	60 متر	3583638	503343	70	200	BH5

10-K1 ، 10-K – 6 – 8 – 6 – 8 – 6 – 8 – 10-K – 10 – 10 – 10 – 10 – 10

این شبه مقطع بمنظور بررسی محدوده آنومالی مقاوم الکتریکی Z5 بین نقاط 10 تا 40 که از آرایه مستطیلی نتیجه گیری شده تهیه شده است ، اندازه گیری ها بین نقاط 90- تا 75 با مختصات AB=MN=30 متر و با جهش ایستگاهی10 متر انجام گرفته است، ادامه این شبه مقطع به زون آنومالی Z6 برخورد می کند(نقشه تغییرات مقاومت الکتریکی AA-2)

نقشه شماره K-10 نقشه شبه مقطع خام با تصحیحات توپوگرافی را ارائه می دهد ،نقشه های شماره I0-K1 و I0-K2 مقاطع مدلسازی IP و RS را نشان می دهد .

در شبه مقطع خام RS و در محدوده آنومالی Z5 هیچگونه آنومالی ظاهر نشده است، مقاومت الکتریکی در فاصله نقاط 15- تا 105 به حداقل 40 اهم متر افت می کند ولی مقدار آن در عمق و در غرب شبه مقطع زیاد شده و در مراکز آنومالی های مقاوم الکتریکی به مقدار 600 اهم مترمیرسد.

در شبه مقطع خام IP و در محدوده آنومالی Z5 نیز هیچگونه آنومالی IP ظاهر نشده است، مقدار آن در زیر نقطه 15 به حداکثر 6.5mv/v میرسد.

در مقطع مدلسازی RS یک محدوده آنومالی مقاوم الکتریکی بین نقاط 30- و 90 مشخص شده است ، همبری های F1 و F2 در این مقطع محدوده آنومالی RS را مشخص کرده است و گسترش آنومالی را در عمق نشان می دهد. در مقطع مدلسازی IP زون آنومالی IP در فاصله نقاط 20 تا 40 قرار گرفته است که با آنومالی شارژابیلیته IP مشخص شده در آرایه مستطیلی و مقطع مدلسازی RS مطابقت دارد، مقاطع مدلسازی شده همخوانی خوبی با آنومالی RS با آرایه مستطیلی دارد و گسترش آن را در عمق نشان می دهد. برای پی گیری آنومالی RS و با توجه به آنومالی زون Z5 گمانه اکتشافی درنقطه 45 با مشخصات زیر پیشنهاد می گردد.

شيب	آزيموت	طول حفاري	Y	X	نقطه	مقطع	رديف
50° е	W-E	70 متر	3583737	503369	50	210	BH6

11-K2 و 11-K ، 11-K ، 11-K ، 11-K و 11-K و 11-K – 11-K – 11 و 7-8

این شبه مقطع برای بررسی زون های آنومالی مقاوم الکتریکی Z5 و Z7 تهیه گردیده است. محدوده Z5 بین نقاط 40- و 0 و محدوده Z7 بین نقاط 120 و 160 از این مقطع واقع شده است. شبه مقطع بین نقاط 60- و 120 و با مشخصات AB=MN=20 متر و جهش ایستگاهی20 متر تهیه شده است، نقشه های شماره K-11 و K-11نقشه خام با تصحیح توپو گرافی ونقشه های K1-11 و Z5-11 نقشه های مدلسازی این مقطع را نشان می دهد، درمقاطع مدلسازی شده و شبه مقاطع محدوده آنومالیZ5 و Z7 نشان داده شده است.

در شبه مقطع خام RS با تصحیح توپو گرافی دو زون آنومالی Z5 و Z7 نشان داده شده است، آنومالی واقع در محدوده نقاط 30- تا 0 در رابطه با Z5 و آنومالی واقع بین نقاط 100 تا 130 در رابطه با آنومالی Z7 می باشد، مقاومت الکتریکی در این دو زون آنومالی بترتیب بین 250 تا 500 اهم متر و 250 تا 450 اهم متر متغیر است.

در شبه مقطع خام IP نیز دو زون آنومالی رگه مانند که مقدار شارژابیلیته در آن نسبتا" زیاد است ظاهر گردیده است، با توجه به شبه مقطع دیده می شود که آنومالی های IP و RS مطابقت نسبی با یکدیگر دارند. در مقطع مدلسازی RS زون آنومالی RS بین نقاط 30- و 10 که مطابق با آنومالی Z5 است تفکیک شده و همبری های F1 و F2 محدوده آن را مشخص می کند، شیب این آنومالی RS بطرف غرب می باشد، آنومالی RS بین نقاط 80 تا 150 با شیبی بطرف غرب با زون آنومالی Z7 کاملا" مطابقت دارد و گسترش آن را در عمق نشان می دهد، همبری F3 بر گرفته از خطوط هم مقاومت الکتریکی محدوده شرقی آنومالی RS را نشان می دهد.

در نقشه مدلسازی IP دو مرکز آنومالی IP که در آرایه مستطیلی در نقاط 0 و 80 مشخص شده اند در این مقطع نیز ظاهر گردیده اند، یک محدوده آنومالی IP درفاصله نقاط 10- تا 50 مشخص شده و محدوده دوم در فاصله نقاط 70 تا 120 واقع بوده و چنانچه دیده می شود این آنومالی های IP همخوانی نسبی با آنومالی های RS را دارد.

با توجه به نتایج تفسیرها و مطابقت آنها با زمین شناسی منطقه و برای بررسی این آنومالی ها انجام یک گمانه اکتشافی در نقطه 150 با مشخصات زیر پیشنهاد میشود.

شيب	آزيموت	طول حفاري	Y	X	نقطه	مقطع	رديف
75°е	W-E	80 متر	3583986	503294	130	235	BH7
	10 771 10	tí to tr					

12-K1،12-K ، 12-K و 240

این شبه مقطع بمنظور بررسی دو زون آنومالی RS شامل Z5 و Z7 انجام شده است ، آنومالی Z5 بین نقاط 60- و 20- و آنومالی Z7 بین نقاط 100 و 140 قرار گرفته است، این شبه مقطع از نقطه 60- تا 120 برداشت گردیده است، مشخصات شبه مقطع AB=MN=20 متر و جهش ایستگاهی آن20 متر بوده است.

نقشه های شماره K-12 و K المبه مقطع خام با تصحیح توپو گرافی را نشان می دهد و در نقشه های 12-K1 و 12-K2 مقاطع مدلسازی ارائه گردیده است. در شبه مقاطع و مقاطع مدلسازی شده محل آنومالی های مقاوم الکتریکی (نقشه شماره Z5 (2-KB نیز نشان داده شده است.

در شبه مقطع خام RS ،سه محدوده مقاوم الکتریکی بین نقاط 30- تا 0 ، 50 تا 90 و 130که قسمت غربی آن محدود نشده تفکیک گردیده است، آنومالی های RS واقع در شرق و غرب شبه مقطع با زون هایZ5 و Z7 همخوانی نسبی دارند، مقاومت های الکتریکی در محدوده آنها حداکثر به 450 اهم متر میرسد.

در شبه مقطع IP یک محدوده آنومالی بین محدوده شرقی شبه مقطع و نقطه 10- که بطرف غرب گسترش دارد تفکیک گردیده که همخوانی نسبی با زون آنومالی Z5 دارد. در مقطع مدلسازی RS شده زون مقاوم الکتریکی بین نقاط 100 و 130 با زون Z7 مطابقت دارد و درنتیجه گسترش عمقی این رگه مشخص گردیده است، همچنین زون آنومالی RS بین نقطه 0 و 20- نیز مطابقت نسبی با زون Z5 دارد ، همبری های F2، F1 ، F3 و F4 محدوده دو رگه مذکور را نشان می دهد.شیب این رگه ها بطرف غرب و با زمین شناسی منطقه مطابقت دارند.

در مقطع مدلسازی IP با توجه به اینکه در نقشه شماره S-KB یک مرکز آنومالی IP بین نقاط 20 و 100 ظاهر شده همانگونه که در این مقطع نیز دیده می شود یک زون آنومالی IP بین نقاط 40 و 80 مشخص شده که در ارتباط با آنومالی Z7 می باشد، همچنین در فاصله نقاط 20- و 40- نیز یک آنومالی ضعیف IP در ارتباط با آنومالی Z5 مشاهده می شود.

با توجه به نتایج بدست آمده همخوانی مقاطع مدلسازی شده IP و RS انجام دو گمانه اکتشافی در نقاط 0 و 140 با مشخصات زیر پیشنهاد می شود.

شيب	آزيموت	طول حفاري	Y	Χ	نقطه	مقطع	رديف
65°е	W-E	60 متر	3584036	503413	0	240	BH8
60°е	W-E	60 متر	3584036	503273	140	240	BH9
				045			0 0

245 – 9 - 8 – بررسی شبہ مقطع 245

نقشه های شماره K1،13-K ، 13-K و 13-K2 و 13-K2

این شبه مقطع بمنظور بررسی محور آنومالی مقاوم الکتریکیZ7 که بین نقاط 80 و 120 درنقشه AB=MN=20 مشخص شده تهیه شده است، برداشت ها بین نقاط 80 و 80 با مشخصات AB=MN=20 متر و با جهش ایستگاهی20 متر انجام گرفته است، نقشه های شماره K-18 و X-18 نقشه خام شبه مقطع را با تصحیح توپوگرافی نشان می دهد و نقشه های شماره K1-13 و R5 مقاطع مدلسازی شدهIP و RS را ارائه می کند.

در شبه مقاطع خام RS ،یک زون آنومالی RS بین نقاط50 تا 90 ظاهر شده که با زون آنومالی Z7 مطابقت نسبی دارد ، زون های آنومالی RS دیگری بصورت غیر منظم قابل تفکیک هستند که موقعیت آنها در شبه مقطع مشخص شده است.

در شبه مقاطع خام IP نیز مراکزی با شارژابیلیته نسبتا" زیاد و حداکثر 10mv/v بصورت محدوده هائی ظاهر شده اند محدوده ای بین نقاط 70 تا 140 و در عمق دارای شارژابیلیته نسبتا" زیادی است و با زون آنومالی Z7 مطابقت کامل دارد. در مقطع مدلسازی RS زون آنومالی Z7 بین نقاط 80 و 120 نشان داده شده است که در ارتباط با زون آنومالی RS که بین نقاط 90 و 120 تفکیک شده می باشد و گسترش این رگه را درعمق مشخص کرده است و دارای شیبی بطرف غرب می باشد، همبری F1 حدود شرقی و این رگه را در عمق نشان می دهد.

همانطوریکه در نقشه B-K (نقشه تغییرات شارژابیلیته) دیده می شود ادامه آنومالی IP مقطع 240 در این مقطع نیز بین نقاط 60 و 120 وجود دارد ، در مقطع مدلسازی شده IP نیز اثر آن بصورت آنومالی ضعیفی که مطابقت با آنومالی RS دارد ظاهر گردیده است و مرکز آن در زیر نقطه 90 تا 100 واقع شده است ، در قسمت شرقی مقطع در فاصله نقاط 30 تا 30- در عمق مقدار شارژابیلیته نسبتا" زیاد می شود.

برای پی گیری این آنومالی انجام یک گمانه اکتشافی از نقطه 120 با مشخصات زیر پیشنهاد میشود.

شيب	آزيموت	طول حفاري	Y	X	نقطه	مقطع	رديف
60°е	W-E	80 متر	3584087	503293	120	245	BH10

250 – 10 – بررسی شبه مقطع

نقشه های شماره 14-K₁ ، 14-K و 14-K₂

این شبه مقطع بمنظور بررسی آنومالی Z5 که بین نقاط 140 و 100 از مقطع 250 واقع شده تهیه شده است (محدوده مقاوم الکتریکی در نقشه Z-KB تا نقطه 260 - گسترش دارد) ، اندازه گیری ها از نقطه 150 - تا 50 - با مشخصات AB=MN=20 متر و با جهش ایستگاهی 20 متر انجام گرفته است ، نقشه شماره K-H شبه مقطع خام با تصحیح توپو گرافی و مقاطع مدلسازی شده در نقشه های -14 K1 و X2-K2 ارائه گردیده اند.

در شبه مقطع خام RS زون آنومالی مقاوم الکتریکی بین نقاط 130- و 110- مشخص شده است که با زون آنومالی Z5 مطابقت دارد و از طرف شرق این آنومالی محدود نشده است و با نقشه های 2-KB همخوانی دارد، آنومالی های RS دیگری درعمق ظاهر شده اند که در ارتباط با زون های رگه های سیلیسی نمی باشند.

در شبه مقطع خام IP ،آنومالی IP در فاصله ایستگاه های 140- تا 110- بصورت رگه ای با شیبی بطرف غرب تفکیک گردیده است که مطابقت با زون آنومالیZ5 را دارد. در مقطع مدلسازی شده RS آنومالی مقاوم الکتریکی بین نقاط 130- تا 40- تفکیک گردیده است، این آنومالی همانگونه که در مقطع دیده می شود بین نقاط 45- و 80 سطحی است و آنومالی بین نقاط 145- و 100- مطابق با آنومالی Z5 می باشد ،همبری F1 محدوده غربی این رگه را مشخص می کند ولی زون آنومالی در شرق مقطع ادامه دارد که این مورد با زون آنومالی نقشه شماره KB-2 نیز مطابقت داشته و آن را تائید می کند.

در مقطع مدلسازی IP ، آنومالی IP که در فاصله ایستگاه های 130 و 100 - تفکیک شده مطابقت با آنومالی Z5 دارد و تائیدی به وجود زون مینرالیزه رگه سیلیسی است، همبری F1 محدوده غربی این رگه را که دارای شیبی بطرف غرب و مطابق با زمین شناسی منطقه است نشان می دهد. همچنین می توان استنباط کرد که رگه سیلیسی و زون مینرالیزه آن در محدوده آنومالی Z5 واقع شده و ارتباطی به محدوده های مقاوم الکتریکی که درشرق مقطع وهمچنین در نقشه HB-2 تفکیک شده ندارد. بر مبنای کلیه تفسیرها و تلفیق نتایج انجام یک گمانه اکتشافی در نقطه با مشخصات زیر پیشنهاد می شود.

شيب	آزيموت	طول حفاري	Y	X	نقطه	مقطع	رديف
45°е	W-E	50 متر	3584136	503498	-85	250	BH 11

 $15-K_2$ و $15-K_1$ ، 15-K بررسی شبه مقطع 255 نقشه های شماره $15-K_1$ ، 15-K و

این شبه مقطع بمنظور بررسی آنومالی Z5 که بین نقاط 140- و 100- در مقطع 255 واقع شده انجام شده است ،اندازه گیری ها از نقطه 150- تا نقطه 70- با مشخصات AB=MN=20 متر و با جهش ایستگاهی 20 متر انجام گرفته است ، شبه مقطع خام با تصحیح توپو گرافی در نقشه شماره K -51 مقاطع مدلسازی شده در نقشه های K1-11 و 15-K2 ارائه گردیده اند.

در شبه مقطع خام RS آنومالی مقاوم الکتریکی بین نقاط 140- و 100- و مطابق با آنومالی Z5 ظاهر شده است،در فاصله ایستگاه های 50- و 10- زون مقاومی ظاهر شده که دارای شیبی بطرف شرق می باشد و همچنین زون دیگری در فاصله ایستگاه های 20- تا 60 و در عمق مشخص شده که گسترش وسیعی در عمق دارد. در شبه مقطع IP یک زون آنومالی در فاصله نقاط 110- تا 80-تفکیک گردیده که با آنومالیZ5 مطابقت دارد همچنین یک زون آنومالی RS مطابق RS مطابق با ب شیبی بطرف غرب جداسازی شده که با زون مقاوم الکتریکی غرب شبه مقطع RS مطابقت دارد. در مقطع مدلسازی RS نقشه شماره 15-K۱ یک آنومالی بارز در فاصله نقاط 85- تا 145-تفکیک گردیده که دارای شیبی بطرف غرب می باشد و با آنومالی Z5 مطابقت کامل دارد، همبری های F1 و F2 محدوده و گسترش آن را بطرف غرب نشان می دهد.

در مقطع مدلسازی IP ، آنومالی IP تفکیک گردیده و مطابقت کامل با آنومالی RS دارد همچنین موقعیت این آنومالی با محدوده آنومالی نقشه شماره 2-KB مطابقت دارد هم بری های F1 و F2 محدوده آنومالی IP را مشخص می کند ، با توجه به زمین شناسی محدوده و شیب لایه ها یک گمانه اکتشافی درنقطه 65- با مشخصات زیر پیشنهاد می شود.

شيب	آزيموت	طول حفاري	Y	X	نقطه	مقطع	رديف
60°е	W-E	60 متر	3584186	503480	-65	255	BH12

8 – 12 – بررسی شبه مقطع 260 نقشه های شماره K1 ، 16-K ، 16-K و 16-K و 16-K و K2 و K1 ، 16-K و K2 و K2 و K1 ، 16-K می شود تهیه این شبه مقطع بمنظور بررسی آنومالی بین نقاط 50 و 100 که زون Z7 را شامل می شود تهیه شده است ، شبه مقطع بین نقاط 80 - تا 50 با مشخصات AB=MN=20 متر و با جهش ایستگاهی20 متر انجام گرفته است .

شبه مقطع خام با تصحیح توپو گرافی در نقشه های شماره K-16 و آ-16 و مقاطع مدلسازی شده در نقشه های I6-K و مقاطع مدلسازی شده در نقشه های I6-K1 و 16-K2 ارائه گردیده اند.

در شبه مقطع RS یک زون آنومالی RS که تطابق کامل با زون Z7 دارد در غرب شبه مقطع مشخص گردیده است و حداکثر مقاومت الکتریکی در این زون به 850 اهم متر میرسد.در قسمت شرق شبه مقطع نیز یک آنومالی RS تفکیک گردیده است.

در شبه مقطع IP نیز میتوان زون آنومالی IP بسیار ضعیفی را که همخوانی با آنومالی RS دارد بین نقاط 70 تا 170 تفکیک نمود . در مقطع مدلسازی شده RS یک زون آنومالی RS بین نقطه 0 تا 85 مشخص شده است که خود شامل دو قسمت می باشد، قسمت شرقی آن بین نقطه 0 تا 25 قرار دارد و بنظر می رسد که سطحی شامل دو قسمت می باشد، قسمت شرقی آن بین نقطه 0 تا 25 قرار دارد و بنظر می رسد که سطحی است در این قسمت در نقشه شماره KB-2 نیز محدوده ای با مقاومت الکتریکی زیاد تفکیک شده است که آنومالی ظاهر شده در مقطع مدلسازی شده در رابطه با این آنومالی است ، قسمت غربی آن بین نقطه 27 نیز نقطه 27 نیز محدوده ای با مقاومت الکتریکی زیاد تفکیک شده است در این قسمت در نقشه شماره 2-K نیز محدوده ای با مقاومت الکتریکی زیاد تفکیک شده است در این قسمت در نقشه شماره 2-K نیز محدوده ای با مقاومت الکتریکی زیاد تفکیک شده است در این قسمت در نقشه شماره 2-K محدوده آنومالی است ، قسمت غربی آن بین نقطه 27 در نقشه شماره 2-K محدوده آنومالی 2-K محدوده آنومالی است ، قسمت غربی آن می در نقشه شماره 2-K محدوده آنومالی 2-K محدوده آنومالی است ، قسمت غربی در این نقطه 25 تا 60 واقع شده و دارای شیبی بطرف غرب می باشد، این قسمت با محدوده آنومالی 2-K محدوده آنومالی محدوده آنومالی است ، قسمت غربی آن است که در نقشه شماره 2-K محدوده آنومالی 2-K محدوده آنومالی 2-K محدوده آنومالی 2-K می باشد، این قسمت با محدوده آنومالی 2-K محدوده آنومالی 2-K محدوده آن را بخوبی در مقطع نشان می دهد .

در مقطع مدلسازی شده IP، آنومالی IP تفکیک شده بین نقاط 0 و 30 واقع شده و با آنومالی RS واقع در محدوده شرقی مقطع مدلسازی RS مطابقت کامل دارد، این آنومالی بطرف غرب ادامه داشته و مرکز دیگری در زیر نقطه 40 ظاهر شده است که مطابقت نسبی با آنومالی RS واقع در غرب مقطع مدلسازی RS دارد. همبری های F1 و F2 محدوده آنومالی IP را نشان می دهد ، با توجه به کلیه اطلاعات و تلفیق آنها انجام دو گمانه اکتشافی زیر در نقاط 20 و 65 با مشخصات زیر پیشنهاد میشود.

شيب	آزيموت	طول حفاري	Y	X	نقطه	مقطع	رديف
70°w	W-E	60 متر	3584237	503393	20	260	BH 13
70°w	W-E	60 متر	3584237	503348	65	260	BH 14

265 - 13 - 8 بررسی شبہ مقطع مقطع

نقشه های شماره K1، 17-K، 17-K و 17-K2 و 17-K2

این شبه مقطع بمنظور بررسی آنومالی RS از محدوده Z5 که بین نقاط 110- و 180- واقع شده انجام گرفته است ، شبه مقطع بین نقاط 400- تا 200- با مشخصات AB=MN=20 متر و با جهش ایستگاهی20 متر انجام گرفته است ، نقشه های شمارهK-17 و X-17 شبه مقطع خام با تصحیح توپوگرافی نقشه های I7-K1 و I7-K2 نقشه های مدلسازی RS و IP را نشان می دهد.

در شبه مقطع RS آنومالی مقاوم الکتریکی محدوده وسیعی را در بر می گیرد که مقاومت الکتریکی بین 300 تا 700 اهم متر متغیر است ، زون کوچکی در زیر نقاط 150- تا 120- دارای افت مقاومت الکتریکی تا حد 150 اهم متر است ، در شبه مقطع IP مقدار شارژابیلیته در عمق و در زون وسیعی بین 15mv/v تا 20mv/v متغیر است. در مقطع مدلسازی RS زون آنومالی Z5 بین ایستگاه های 110 و 180 - نیز نشان داده شده است، در این مقطع مدلسازی شده زون آنومالی RS بین نقاط 150 و 230 - مشخص شده و گسترش آنومالی RS را در عمق نشان می دهد که از طرف غرب دارای گسترش می باشد، همبری های F1 و RSمحدوده زون آنومالی RS را نشان می دهد.زون مقاوم الکتریکی در قسمت شرق نیز در سطح وسیعی وجود دارد که در نقشه شماره K-2 نیز تفکیک گردیده است و احتمالا" در رابطه با تغییر سازندها می باشد.

درمقطع مدلسازی IP و در محدوده نقاط 140- تا 180- مقدار شارژابیلیته درنقشه IP فسبت به محدوده های مجاور خیلی کم می باشد که در مقطع مدلسازی IP نیز این مورد با افت مقدار شارژابیلیته به حداقل 2mv/v تا 4mv/v تائید می شود و هیچگونه آنومالی IP در محدوده آنومالی RS مشاهده نمی شود.مقدار شارژابیلیته در عمق بین نقاط 210- و 330- زیاد و به حداکثر 30mv/v می رسد که میتواند در رابطه با تغییر سازند قلمداد گردد.

برای مشخص کردن موقعیت آنومالی های RS در عمق انجام دو گمانه اکتشافی درنقطه 160- و 285- با مشخصات زیر پیشنهاد می گردد.

شيب	آزيموت	طول حفاري	Y	Χ	نقطه	مقطع	رديف
65°E	W-E	80 متر	3584286	503573	-160	265	BH15
65°E	W-E	80 متر	3584285	503693	-285	265	BH16

۹ – نتیجه گیری کلی و پیشنهادها

لازم به یادآوری است که هدف از مطالعات ژئوفیزیک در محدوده گردنه رخ " لاتاریک" مشخص کردن لایه های سیلیسی حاوی سولفور روی بوده است، سولفور روی که قابل هدایت الکتریکی ندارد همراه با کمی سولفور سرب (گالن) بوده و در یک لایه سیلیسی قرار دارد ، با برداشت های فاکتورهای فیزیکی IP و RS با روش ژئوالکتریک وجود سولفور سرب به مقدار کم نیز می توانست زون های مینرالیزه را مشخص کند، از طرف دیگر مقاومت الکتریکی نسبتا" زیاد رگه سیلیسی می توانست این لایه را در داخل شیل های ژوراسیک قابل تشخیص و ردیابی نماید ، در این مورد باید توجه داشت که در سازندهای ژوراسیک لایه های ماسه سنگ نیز می توانند بصورت محدوده های مقاوم الکتریکی در داخل شیل ها ظاهر گردند ، همچنین سنگ های ولکانیکی که در داخل شیل ها وجود دارند نیز می توانند در ردیابی لایه های سیلیسی مورد نظر ناهماهنگی بوجود سیلیسی و وجود سولفور سرب نیز که بمقدار کم در لایه های سیلیسی همراه با سولفور روی دیده می شود این لایه ها را مشخص نمود.

برای نتیجه گیری از این مطالعات در راستای اهداف مورد نظر ابتدا خلاصه ای از مطالعات انجام شده ذکر گردیده و نتیجه گیری از آن بعمل آمده و سپس پیشنهادهای لازم ارائه می گردد.

در منطقه گردنه رخ "لاتاریک" جمعا" 3535 اندازه گیری فاکتورهای فیزیکی IP و RS انجام شده است، محدوده مورد نظر ابتدا با آرایه رکتانگل (Rectangle) یا مستطیلی زیر پوشش اندازه گیری قرار گرفت، مشخصات شبکه 20 × 50 متر بوده که با طول خط جریان AB=800 متر و 20=MN متر اندازه گیری ها انجام گرفته است ، موقعیت مقاطع و ایستگاه های اندازه گیری در نقشه K-1 بنام متر اندازه گیری و انجام گرفته است ، موقعیت مقاطع و ایستگاه های اندازه گیری در نقشه T-1 بنام الکتریکی و شارژ اییلیته با مقیاس 2000/1 و در نقشه های K-2 و K-4 نقشه های تغییرات مقاومت الکتریکی و شارژ اییلیته با مقیاس 1/2000 و در نقشه های K-5 و K-4 نقشه های تغییرات مقاومت الکتریکی و شارژ اییلیته با مقیاس 1/2000 ارائه گردیده است ، در نقشه های شماره K-5 تغییرات مقاومت متبه مقاطع و مقاطع مدلسازی نشان داده شده و نتایج مورد بحث قرار گرفته اند.

در نقشه شماره KA-2 و KB-2 تغییرات مقاومت الکتریکی و شارژابیلیته در کنار یکدیگر نشان داده شده است ، دراین محدوده همانگونه که گفته شده در بین شیل ها رگه سیلیسی می تواند با مقاومت ظاهری مشخص گردد ، با توجه به این نقشه ها که با طیف رنگی ارائه شده اند، زون های مقاوم و هادی الکتریکی مشخص گردیده اند ، با توجه به نقشه ها دیده می شود که محدوده هائی با مقاوم و هادی الکتریکی مشخص گردیده اند ، با توجه به نقشه ها دیده می شود که محدوده هائی با مقاومت زیاد در یک زمینه با مقاومت نسبتا" کمتر ظاهر شده اند ، این زون های مقاوم الکتریکی که بصورت یک لایه خود را ظاهر کرده اند و با توجه به زمین شناسی منطقه تفکیک گردیده و امتداد و محدوده آنها مشخص گردیده است که در مواقعی بوسیله گسل های احتمالی با امتداد شمال شرق – جنوب غرب جابجائی نیز در آنها مشاهده می شود ، مشروح محدوده های تفکیک شده در بخش های مربوطه بیان گردیده است ، این محدوده ها و مشخصات آنها در جدول زیر نشان داده شده اند.

نقشه شماره 2-K	تفکیک شدہ از ن	های مقاوم الکتریکی	محدوده و مشخصات رگه ه
----------------	----------------	--------------------	-----------------------

آثار مینرالیزاسیون	پهنای متوسط	طول به	محدوده	شماره زون
		متر	مقاطع زونهاى	آنومالی RS
			آنومالی RS	
درمقاطع 15تا25 و 85 تا 95	20 تا 30 متر	1250	125 – 0	Z1
	20 تا 25 متر	500	90 - 40	Z2
	20 متر	350	65 – 30	Z3
در مقطع 165				

در مقاطع 125، 135 تا 150	20 تا 25 متر	350	170 – 135	Z4
	20 تا 30 متر	1650	275 - 110	Z5
در مقاطع 230 و 280	20 تا 25 متر	750	255 - 180	Z6
در مقطع 275	20 تا 25 متر	450	285 - 220	Z7
	20 تا 25 متر	100	375-365	Z7a
	20 تا 25 متر	650	310 - 245	Z8
در مقطع 285	10 تا 40 متر	650	310 - 245	Z9
	10 تا 30 متر	450	310 - 265	Z10
	30 تا 35 متر	محدود	310 - 300	Z11
		نشده		

نقشه های شماره A-S و KB-S نیز تغییرات شارژابیلیته را که طیف آن بین 3mv/v تا 20mv/v در می باشد نشان می دهد، زون هائی که مقدار شارژابیلیته در آنها نسبتا" زیاد است با مقیاس رنگ در نقشه مشخص گردیده اند، حداکثر شارژابیلیته در قسمت شمال شرق منطقه در سطح وسیعی اندازه گیری ظاهر شده که مقدار شارژابیلیته درآن بین 15mv/v تا 20mv/v متغیر است که با توجه به سازندهای موجود احتمالا" در این محدوده زیاد شدن شارژابیلیته در رابطه با زمینه این تشکیلات است که عمدتا" شیل های ژوراسیک با رخساره متفاوت و یا سنگ های ولکانیکی هستند، آنچه در این نقشه مورد توجه بوده ردیابی زون هائی است که بصورت لایه و در امتداد و راستائی قرار دارند که می تواند نشانگر وجود یک رگه مینرالیزه باشد، مشروح محدوده هائی که دارای شارژابیلیته نسبتا" زیاد بوده و همخوانی با آنومالی های RS داشته نیز ارائه گردید.

در این نقشه ها گسل ها و یا همبری هائی که بر مبنای تغییرات شارژابیلیته نتیجه گیری شده نیز نشان داده شده است که با حروف F1 ، F2 و ...F8 در نقشه مشخص شده است، یادآوری می گردد که لایه سیلیسی مینرالیزه درنقاط مختلف دارای رخنمون می باشد و احتمالا" بوسیله چین های محلی تکرار نیز گردیده اند. در نقشه تغییرات شارژابیلیته زون های آنومالی RS با شماره Z1 تا Z1 آورده شده و تغییرات شارژابیلیته در محدوده زون های آنومالی RS بررسی گردیده و نتیجه گیری شده اند. در برخی موارد تطابق نسبی بین آنومالی های RS و IP وجود دارد.

برای بررسی بیشتر آنومالی ها ، تعداد 13 شبه مقطع از مراکز آنومالی های مقاوم الکتریکی در زون های مختلف تهیه گردید ، این شبه مقاطع ابتدا با تصحیح توپو گرافی و بصورت خام تهیه گردیده و برای هر یک از آنها موقعیت و گستره آنومالی های مقاومت الکتریکی و شارژ ابیلیته تشریح گردیده و سپس با استفاده از نرم افزار RES2DINV مقاطع مدلسازی با طیف رنگی تهیه گردید که نتایج تفسیرها در بخش های گذشته درنقشه های شماره K-5 تا K-1 بصورت مشروح بیان گردید. در این تفسیرها زون های آنومالی RS برگرفته از نقشه تغییرات مقاومت الکتریکی و با شماره زون مربوطه در مقاطع مدلسازی آورده شده و نتایج با شبه مقاطع، مقطع مدلسازی IP و زمین شناسی منطقه تلفیق گردیده و پس از بحث و تبادل نظر با کارشناسان زمین شناسی، محل گمانه های اکتشافی با مشخصات آنها شامل مختصات نقطه حفاری ، شیب ، آزیموت و طول حفاری ارائه گردیده اند. مجموعه این حفاری که مشخصات آنها در بررسی هر شبه مقطع ذکر گردیده در جدول زیر نشان داده شده است.

محل های حفاری پیشنهادی و مشخصات آنها در محدوده کوه رخ

طول					نقطه	شماره	شماره
حفاري به	شيب	آزيموت	Х	Y	حفارى	حفارى	شبه مقطع
متر							
50	50° s.e	N100°e	503144	3581804	55	\mathbf{BH}_{1}	15
60	70° s.e	N100°e	503294	3582591	50	BH ₂	95
80	65° s.e	N100°e	503350	3582889	50	BH ₃	125
70	75°е	N100°e	503303	3583288	110	BH4	165
60	65° е	N100°e	503343	3583638	70	BH5	200
70	50° е	N100°e	503369	3583737	45	BH6	210
80	75° е	N100°e	503269	3583986	130	BH7	235
60	65° е	W-E	503413	3584036	0	BH8	240
60	60° е	W-E	503273	3584036	140	BH9	
80	60°е	W-E	503293	3584087	120	BH 10	245
50	45 [°] е	W-E	503498	3584136	-85	BH 11	250

60	60° е	W-E	503480	3584186	-65	BH12	255
60	70°е	W-E	503393	3584237	20	BH 13	260
60	70° е	W-E	503348	3584237	65	BH 14	
80	65°е	W-E	503573	3584286	-160	BH15	265
80	65°е	W-E	503693	3584285	-285	BH 16	

باید در نظر داشت که با انجام هر گمانه اکتشافی و بررسی نتایج آن میتوان گمانه های اکتشافی دیگری را نیز مشخص نموده و یا محل برخی از آنها را تغییر دارد.

۹ – ۱ – پیشنهاد مطالعات تکمیلی با لحاظ نتایج بدست آمده و تفکیک زون های آنومالی و با توجه به نقشه تغییرات مقاومت الکتریکی RS و شارژابیلیته IP (نقشه های شماره AS-2 و Ka-2)پیشنهاد می شود که مطالعات به روش الکتریک در قسمت شمال منطقه و بعد از مقطع 310 ادامه پیدا کند همچنین با توجه به وجود سنگ های ولکانیکی در داخل سازندهای شیلی و تفکیک محدوده آنها برداشت های مغناطیس سنجی در این محدوده انجام گیرد.

تشكر و امتنان

بدینوسیله از آقای مهندس ناصر عابدیان مجری محترم طرح و آقای مهندس بهروز برنا مدیر محترم اکتشافات معدنی سازمان زمین شناسی و اکتشافات معدنی کشور به جهت همکاری صمیمانه ایشان تشکر می شود، همچنین از آقای مهندس ابراهیم شاهین مجری محترم فنی طرح و مدیر امور خدمات اکتشاف و آقای مهندس قلی پور زمین شناس منطقه که در بحث و تبادل نظر در مورد نتایج ژئوفیزیک شرکت کرده اند تشکر می شود و از آقای مهندس سید ابوالحسن رضوی ناظر فنی این طرح به جهت همکاری صمیمانه مشارالیه با اکیپ های ژئوفیزیک قدردانی می گردد. این مشاور آمادگی کارشناسان خود را جهت هر گونه بحث و تبادل نظر در مورد نتایج ژئوفیزیک مهندسين مشاور و خدمات زمين فيزيك